The role of auditory feedback in speech motor control was explored in three related experiments. Experiment 1 investigated auditory sensorimotor adaptation: the process by which speakers alter their speech production to compensate for perturbations of auditory feedback. When the first formant frequency (F1) was shifted in the feedback heard by subjects as they produced vowels in consonant-vowel-consonant (CVC) words, the subjects’ vowels demonstrated compensatory formant shifts that were maintained when auditory feedback was subsequently masked by noise—evidence of adaptation. Experiment 2 investigated auditory discrimination of synthetic vowel stimuli differing in F1 frequency, using the same subjects. Those with more acute F1 discrimination had compensated more to F1 perturbation. Experiment 3 consisted of simulations with the directions into velocities of articulators model of speech motor planning, which showed that the model can account for key aspects of compensation. In the model, movement goals for vowels are regions in auditory space; perturbation of auditory feedback invokes auditory feedback control mechanisms that correct for the perturbation, which in turn causes updating of feedforward commands to incorporate these corrections. The relation between speaker acuity and amount of compensation to auditory perturbation is mediated by the size of speakers’ auditory goal regions, with more acute speakers having smaller goal regions.

1.
Abbs
,
J. H.
, and
Gracco
,
V. L.
(
1984
). “
Control of complex motor gestures: Orofacial muscle responses to load perturbations of lip during speech
,”
J. Neurophysiol.
51
,
705
723
.
2.
Bedford
,
F. L.
(
1989
). “
Constraints on learning new mappings between perceptual dimensions
,”
J. Exp. Psychol. Hum. Percept. Perform.
15
,
232
248
.
3.
Bhushan
,
N.
, and
Shadmehr
,
R.
(
1999
). “
Computational nature of human adaptive control during learning of reaching movements in force fields
,”
Biol. Cybern.
81
,
39
60
.
4.
Blakemore
,
S. J.
,
Goodbody
,
S. J.
, and
Wolpert
,
D. M.
(
1998
). “
Predicting the consequences of our own actions: The role of sensorimotor context estimation
,”
J. Neurosci.
18
,
7511
7518
.
5.
Burnett
,
T. A.
,
Freedland
,
M. B.
,
Larson
,
C. R.
, and
Hain
,
T. C.
(
1998
). “
Voice F0 responses to manipulations in pitch feedback
,”
J. Acoust. Soc. Am.
103
,
3153
3161
.
6.
Callan
,
D. E.
,
Kent
,
R. D.
,
Guenther
,
F. H.
, and
Vorperian
,
H. K.
(
2000
). “
An auditoryfeedback based neural network model of speech production that is robust to developmental changes in the size and shape of the articulatory system
,”
J. Speech Lang. Hear. Res.
43
,
721
736
.
7.
Fujimura
,
O.
, and
Kakita
,
Y.
(
1979
). “
Remarks on quantitative description of lingual articulation
,” in
Frontiers of Speech Communication Research
, edited by
B.
Lindblom
and
S.
Öhman
(
Academic
, San Diego), pp.
17
24
.
8.
Guenther
,
F. H.
(
1995
). “
Speech sound acquisition, coarticulation, and rate effects in a neural network model of speech production
,”
Psychol. Rev.
102
,
594
621
.
44.
Guenther
,
F. H.
(
1994
). “
A neural network model of speech acquisition and motor equivalent speech production
,”
Biol. Cybern.
72
,
43
53
9.
Guenther
,
F. H.
,
Espy-Wilson
,
C. Y.
,
Boyce
,
S. E.
,
Matthies
,
M. L.
,
Zandipour
,
M.
, and
Perkell
,
J. S.
(
1999b
). “
Articulatory tradeoffs reduce acoustic variability during American English /r/ production
,”
J. Acoust. Soc. Am.
105
,
2854
2865
.
10.
Guenther
,
F. H.
,
Ghosh
,
S. S.
, and
Tourville
,
J. A.
(
2006
). “
Neural modeling and imaging of the cortical interactions underlying syllable production
,”
Brain Lang
96
,
280
301
.
11.
Guenther
,
F. H.
,
Hampson
,
M.
, and
Johnson
,
D.
(
1998
). “
A theoretical investigation of reference frames for the planning of speech movements
,”
Psychol. Rev.
105
,
611
633
.
12.
Guenther
,
F. H.
,
Husain
,
F. T.
,
Cohen
,
M. A.
, and
Shinn-Cunningham
,
B. G.
(
1999a
). “
Effects of categorization and discrimination training on auditory perceptual space
,”
J. Acoust. Soc. Am.
106
,
2900
2912
.
13.
Guenther
,
F. H.
,
Nieto-Castanon
,
A.
,
Ghosh
,
S. S.
, and
Tourville
,
J. A.
(
2004
). “
Representation of sound categories in auditory cortical maps
,”
J. Speech Lang. Hear. Res.
47
,
46
57
.
45.
Honda
,
M.
, and
Murano
,
E.
(
2003
). “
Effects of tactile and auditory feedback on compensatory articulatory response to an unexpected palatal perturbation
,”
Proceedings of the Sixth Speech Production Seminar
,
Sydney, Australia
, Dec. 7–10, 2003.
14.
Houde
,
J. F.
, and
Jordan
,
M. I.
(
1998
). “
Sensorimotor adaptation in speech production
,”
Science
279
,
1213
l216
.
15.
Houde
,
J. F.
, and
Jordan
,
M. I.
(
2002
). “
Sensorimotor adaptation of speech I: Compensation and adaptation
,”
J. Speech Lang. Hear. Res.
45
,
295
310
.
16.
Jones
,
J. A.
, and
Munhall
,
K. G.
(
2000
). “
Perceptual calibration of F0 production: Evidence from feedback perturbation
,”
J. Acoust. Soc. Am.
108
,
1246
1251
.
17.
Kawahara
,
H.
(
1993
). “
Transformed auditory feedback: Effects of fundamental frequency perturbation
,”
J. Acoust. Soc. Am.
94
,
1883
1884
.
18.
Kawato
,
M.
, and
Gomi
,
H.
(
1992
). “
The cerebellum and VOR/OKR learning models
,”
Trends Neurosci.
15
,
445
453
.
19.
Lane
,
H. L.
, and
Tranel
,
B. W.
(
1971
). “
The Lombard sign and the role of hearing in speech
,” J. Speech Lang. Hear. Res.
14
,
677
709
.
20.
Lindblom
,
B. E. F.
,
Lubker
,
J. F.
, and
Gay
,
T.
(
1979
). “
Formant frequencies of some fixed-mandible vowels and a model of speech motor programming by predictive simulation
,”
J. Phonetics
7
,
147
161
.
21.
Macmillan
,
N. A.
, and
Creelman
,
C. D.
(
2005
).
Detection Theory: A User’s Guide
, 2nd ed. (
Lawrence Erlbaum
, Mahwah, NJ).
22.
Maeda
,
S.
(
1990
). “
Compensatory articulation during speech: Evidence from the analysis and synthesis of vocal-tract shapes using an articulatory model
,” in
Speech Production and Speech Modeling
, edited by
W. J.
Hardcastle
and
A.
Marchal
(
Kluwer
, Dordrecht), pp.
131
149
.
23.
Markel
,
J. D.
, and
Gray
,
A. H.
(
1976
).
Linear Prediction of Speech
(
Springer-Verlag
, New York).
24.
Max
,
L.
,
Wallace
,
M. E.
, and
Vincent
,
I.
(
2003
). “
Sensorimotor adaptation to auditory perturbations during speech: Acoustic and kinematic experiments
,”
Proceedings of the 15th Internatiional Congress of Phonetic Sciences
, Barcelona, pp.
1053
1056
.
25.
Miller
,
J. D.
(
1989
). “
Auditory-perceptual interpretation of the vowel
,”
J. Acoust. Soc. Am.
85
, pp.
2114
2134
.
26.
Newman
,
R. S.
(
2003
). “
Using links between speech perception and speech production to evaluate different acoustic metrics: A preliminary report
,”
J. Acoust. Soc. Am.
113
,
2850
2860
.
27.
Nieto-Castanon
,
A.
,
Guenther
,
F. H.
,
Perkell
,
J.
, and
Curtin
,
H. D.
(
2005
). “
A modeling investigation of articulatory variability and acoustic stability during American English /r/ production
,”
J. Acoust. Soc. Am.
117
,
3196
3212
.
28.
Oppenheim
,
A. V.
, and
Schafer
,
R. W.
(
1999
).
Discrete-Time Signal Processing
, 2nd ed. (
Prentice–Hall
, Upper Saddle River, NJ).
29.
Perkell
,
J. S.
(
1996
). “
Properties of the tongue help to define vowel categories: Hypotheses based on physiologically oriented modeling
,”
J. Phonetics
24
,
3
22
.
30.
Perkell
,
J. S.
,
Guenther
,
F. H.
,
Lane
,
H.
,
Matthies
,
M. L.
,
Stockmann
,
E. S.
, and
Tiede
,
M.
(
2004a
). “
The distinctness of speakers’ productions of vowel contrasts is related to their discrimination of the contrasts
,”
J. Acoust. Soc. Am.
116
,
2338
2344
.
31.
Perkell
,
J. S.
,
Matthies
,
M. L.
,
Tiede
,
M.
,
Lane
,
H.
,
Zandipour
,
M.
, and
Marrone
,
N.
(
2004b
). “
The distinctness of speakers’ s contrast is related to their auditory discrimination and use of an articulatory saturation effect
,”
J. Speech Lang. Hear. Res.
47
,
1259
1269
.
32.
Porschmann
,
C.
(
2000
). “
Influences of bone conduction and air conduction on the sound of one’s own voice
,”
Acta Acust. (Beijing)
86
,
1038
1045
.
33.
Press
,
W. H.
,
Teukolsky
,
S. A.
,
Vetterling
,
W. T.
, and
Flannery
,
B. P.
(
2002
).
Numerical Recipes in C
, 2nd ed. (
Cambridge University Press
, Cambridge).
34.
Purcell
,
D. W.
, and
Munhall
,
K. G.
(
2006
). “
Adaptive control of vowel formant frequency: Evidence from real-time formant manipulation
,”
J. Acoust. Soc. Am.
120
,
966
977
.
35.
Savariaux
,
C.
,
Perrier
,
P.
, and
Orliaguet
,
J. P.
(
1995
). “
Compensation strategies for the perturbation of the rounded vowel [u] using a lip tube: A study of the control space in speech production
,”
J. Acoust. Soc. Am.
98
,
2428
2842
.
36.
Tourville
,
J. A.
,
Guenther
,
F. H.
,
Ghosh
,
S. S.
, and
Bohland
,
J. W.
(
2004
). “
Effects of jaw perturbation on cortical activity during speech production
,”
J. Acoust. Soc. Am.
116
,
2631
(A).
37.
Vallabha
,
G. K.
, and
Tuller
,
B.
(
2002
). “
Systematic errors in the formant analysis of steady-state vowels
,”
Speech Commun.
38
,
141
160
.
38.
Villacorta
,
V. M.
(
2006
). “
Sensorimotor adaptation to perturbations of vowel acoustics and its relation to perception
,” Unpublished doctoral dissertation,
Massachusetts Institute of Technology
, Cambridge, MA.
39.
Welch
,
R. B.
(
1978
).
Perceptual Modification: Adapting to Altered Sensory Environments
(
Academic
, New York).
40.
Wolpert
,
D. M.
,
Ghahramani
,
Z.
, and
Jordan
,
M. I.
(
1995
). “
Are arm trajectories planned in kinematic or dynamic coordinates? An adaptation study
,”
Exp. Brain Res.
103
,
460
470
.
41.
Wolpert
,
D. M.
, and
Kawato
,
M.
(
1998
). “
Multiple paired forward and inverse models for motor control
,”
Neural Networks
1217
,
1
13
.
42.
Xu
,
Y.
,
Larson
,
C. R.
,
Bauer
,
J. J.
, and
Hain
,
T. C.
(
2004
). “
Compensation for pitch-shifted auditory feedback during the production of Mandarin tone sequences
,”
J. Acoust. Soc. Am.
116
,
1168
1178
.
43.
Yates
,
A. J.
(
1963
). “
Delayed auditory feedback
,”
Psychol. Bull.
60
,
213
232
.
You do not currently have access to this content.