In this paper, an optimization technique is presented for the design of piezoelectric buzzers. This design technique aims at finding the optimal configuration of the coupled cavity and diaphragm structure to maximize the sound pressure output. Instead of measuring the material constants of the piezoelectric ceramic and the metal diaphragm, an “added-mass method” is developed to estimate the equivalent electromechanical parameters of the system on which an analogous circuit can be established. The electrical impedance and on-axis sound pressure level of the piezoelectric buzzer can be simulated by solving the loop equations of the electromechanoacoustical analogous circuit. An interesting finding of this research is that the nature of the piezoelectric buzzer bears remarkable resemblance to that in the dynamic vibration absorber theory. Much physical insight can be gained by exploiting this resemblance in search of the optimal configuration. According to the system characteristic equation, a design chart was devised to “lock” the critical frequency at which the system delivers the maximal output. On the basis of the analogous circuit and the vibration absorber theory, an optimal design was found with constrained optimization formalism. Experiments were conducted to justify the optimal design. The results showed that the performance was significantly improved using the optimal design over the original design. Design guidelines for the piezoelectric buzzers are summarized.

1.
G.
Caliano
,
N.
Lamberti
,
A.
Iula
, and
M.
Pappalardo
, “
A piezoelectric bimorph static pressure sensor
,”
Sens. Actuators, A
,
46
,
176
178
(
1995
).
2.
C. I.
Tseng
and
W. J.
Liou
, “
Simulation of a bimorph transducer under acoustic excitation
,”
Comput. Struct.
,
59
,
141
148
(
1996
).
3.
A. B.
Dobrucki
and
P.
Pruchnicki
, “
Theory of piezoelectric axisymmetric bimorph
,”
Sens. Actuators, A
,
58
,
203
212
(
1997
).
4.
Q.
Wang
,
S. T
,
Quek
,
C. T.
Sun
, and
X.
Liu
, “
Analysis of piezoelectric coupled circular plate
,”
Smart Mater. Struct.
,
10
,
229
239
(
2001
).
5.
B.
Aronov
, “
The energy method for analyzing the piezoelectric electroacoustic transducers
,”
J. Acoust. Soc. Am.
,
117
,
210
220
(
2005
).
6.
B.
Aronov
, “
The energy method for analyzing the piezoelectric electroacoustic transducers. II (With the examples of the flexural plate transducer)
,”
J. Acoust. Soc. Am.
118
,
627
637
(
2005
).
7.
M. R.
Bai
and
Y.
Lu
, “
Optimal implementation of miniature piezoelectric panel speakers using the Taguchi method and Genetic algorithm
,”
J. Vibr. Acoust.
,
126
,
359
369
(
2004
).
8.
F. L.
Wen
,
S. C.
Mou
, and
M.
Ouyang
, “
Design and construction of shaft-driving type piezoceramic ultrasonic motor
,”
Ultrasonics
43
,
35
47
(
2004
).
9.
A.
Caronti
,
G.
Caliano
, and
M.
Pappalardo
, “
An accurate model for capacitive micromachined ultrasonic transducers
,”
IEEE Trans. Comput.-Aided Des.
,
49
,
159
168
(
2002
).
10.
Q.
Gallas
,
R.
Holman
,
T.
Nishida
,
B.
Carroll
,
M.
Sheplak
, and
L.
Cattafesta
, “
Lumped element modeling of piezoelectric-driven synthetic jet actuators.
AIAA J.
,
41
,
240
247
(
2003
).
11.
F. S.
Tse
,
I. E.
Morse
, and
R. T.
Hinke
,
Mechanical Vibrations: Theory and Applications
(
Allyn & Bacon
,
Boston, MA
,
1978
).
12.
L.
Meirovitch
,
Element of Vibration Analysis
(
McGraw-Hill
, New York,
1986
).
13.
W. M.
Leach
, Jr.
,
Introduction to Electroacoustics and Audio Amplifier Design
(
Kendall-Hunt
,
Dubuque, IA
,
2003
).
14.
L. L.
Beranek
,
Acoustics
(
Acoustical Society of America
, Melville, NY
1996
).
15.
C. A.
Desoer
and
E. S.
Kuh
,
Basic Circuit Theory
(
McGraw-Hill
, New York,
1969
).
16.
P. E.
Gill
,
W.
Murry
, and
M. H.
Wright
,
Practical Optimization
(
Academic
, New York,
1981
).
17.
J. S.
Arora
,
Introduction to Optimum Design
(
McGraw-Hill
, New York
1989
).
18.
M. A.
Bhatti
,
Practical Optimization Methods with Mathematica Applications
(
Springer
, Berlin,
2000
).
19.
IEEE
,
IEEE Standard on Piezoelectricity
(
New York,
1987
).
20.
Math Works, “
Matlab optimization toolbox
” (http://www.mathworks.com/products/optimization/). Last viewed 7/23/2007.
You do not currently have access to this content.