Impulsive-source active sonar systems are often plagued by false alarm echoes resulting from the presence of naturally occurring clutter objects in the environment. Sonar performance could be improved by a technique for discriminating between echoes from true targets and echoes from clutter. Motivated by anecdotal evidence that target echoes sound very different than clutter echoes when auditioned by a human operator, this paper describes the implementation of an automatic classifier for impulsive-source active sonar echoes that is based on perceptual signal features that have been previously identified in the musical acoustics literature as underlying timbre. Perceptual signal features found in this paper to be particularly useful to the problem of active sonar classification include: the centroid and peak value of the perceptual loudness function, as well as several features based on subband attack and decay times. This paper uses subsets of these perceptual signal features to train and test an automatic classifier capable of discriminating between target and clutter echoes with an equal error rate of roughly 10%; the area under the receiver operating characteristic curve corresponding to this classifier is found to be 0.975.

1.
P.
Chestnut
,
H.
Landsman
, and
R. W.
Floyd
, “
A sonar target recognition experiment
,”
J. Acoust. Soc. Am.
66
,
140
147
(
1979
).
2.
F. B.
Shin
,
D. H.
Kil
, and
R. F.
Wayland
, “
Active impulse echo discrimination in shallow water by mapping target physics-derived features to classifiers
,”
IEEE J. Ocean. Eng.
22
,
66
80
(
1997
).
3.
N.
Allen
,
P. C.
Hines
,
V. W.
Young
, and
D. A.
Caldwell
, “
Study on the human ability to aurally discriminate between target echoes and environmental clutter in recordings of incoherent broadband sonar
,”
J. Acoust. Soc. Am.
119
,
3395
(Abstract) (
2006
).
4.
J.
Pitton
,
S.
Philips
,
L.
Atlas
,
J.
Ballas
,
D.
Brock
,
B.
McClimens
, and
M.
Miller
, “
Aural classification of impulsive-source active sonar echoes
,”
J. Acoust. Soc. Am.
119
,
3394
3395
(Abstract) (
2006
).
5.
ANSI,
Psychoacoustical Terminology S3.20
(
American National Standards Institute
, New York,
1973
).
6.
K. W.
Berger
, “
Some factors in the recognition of timbre
,”
J. Acoust. Soc. Am.
36
,
1888
1891
(
1964
).
7.
E. L.
Saldanha
and
J. F.
Corso
, “
Timbre cues and the identification of musical instruments
,”
J. Acoust. Soc. Am.
36
,
2021
2026
(
1964
).
8.
J. M.
Grey
, “
Multidimensional perceptual scaling of musical timbres
,”
J. Acoust. Soc. Am.
61
,
1270
1277
(
1977
).
9.
J.
Marozeau
,
A.
de Cheveigne
,
S.
McAdams
, and
S.
Winsberg
, “
The dependency of timbre on fundamental frequency
,”
J. Acoust. Soc. Am.
114
,
2946
2957
(
2003
).
10.
J. M.
Grey
and
J. A.
Moorer
, “
Perceptual evaluations of synthesized musical instruments
,”
J. Acoust. Soc. Am.
62
,
454
462
(
1977
).
11.
J. M.
Grey
and
J. W.
Gordon
, “
Perceptual effects of spectral modifications on musical timbres
,”
J. Acoust. Soc. Am.
63
,
1493
1500
(
1978
).
12.
P.
Iverson
and
C. L.
Krumhansl
, “
Isolating the dynamic attributes of musical timbre
,”
J. Acoust. Soc. Am.
94
,
2595
2603
(
1993
).
13.
J. E.
Cutting
and
B. S.
Rosner
, “
Categories and boundaries in speech and music
,”
Percept. Psychophys.
16
,
564
570
(
1974
).
14.
W. M.
Hartmann
,
S.
McAdams
,
A.
Gerzso
, and
P.
Boulez
, “
Discrimination of spectral density
,”
J. Acoust. Soc. Am.
79
,
1915
1925
(
1986
).
15.
J. C.
Brown
,
O.
Houix
, and
S.
McAdams
, “
Feature dependence in the automatic identification of musical woodwind instruments
,”
J. Acoust. Soc. Am.
109
,
1064
1072
(
2001
).
16.
S.
Tucker
and
G. J.
Brown
, “
Classification of transient sonar sounds using perceptually motivated features
,”
IEEE J. Ocean. Eng.
30
,
588
600
(
2005
).
17.
M. K.
Prior
, “
A scatterer map for the Malta Plateau
,”
IEEE J. Ocean. Eng.
30
,
676
690
(
2005
).
18.
N. R.
Chapman
, “
Measurement of the waveform parameters of shallow explosive charges
,”
J. Acoust. Soc. Am.
78
,
672
681
(
1985
).
19.
N. R.
Chapman
, “
Source levels of shallow explosive charges
,”
J. Acoust. Soc. Am.
84
,
697
702
(
1988
).
20.
W. A.
Struzinski
and
E. D.
Lowe
, “
A performance comparison of four noise background normalization schemes proposed for signal detection systems
,”
J. Acoust. Soc. Am.
76
,
1738
1742
(
1984
).
21.
W. A.
Struzinski
and
E. D.
Lowe
, “
The effect of improper normalization on the performance of an automated energy detector
,”
J. Acoust. Soc. Am.
78
,
936
941
(
1985
).
22.
J.
Kliewer
and
A.
Mertins
, “
Audio subband coding with improved representation of transient signal segments
,”
Proceedings of the Ninth European Signal Processing Conference
,
Rhodes
, Greece, (
1998
), pp.
2345
2348
.
23.
M.
Slaney
, “
An efficient implementation of the Patterson-Holdsworth auditory filter bank
,” Apple Computer Inc., Tech. Rep. No. TR-35,
1993
.
24.
B. C. J.
Moore
and
B. R.
Glasberg
, “
A revision of Zwicker’s loudness model
,”
Acustica
82
,
335
345
(
1996
).
25.
E.
de Boer
, “
Synthetic whole-nerve action potentials for the cat
,”
J. Acoust. Soc. Am.
58
,
1030
1045
(
1975
).
26.
L.
Van Immerseel
and
S.
Peeters
, “
Digital implementation of linear gammatone filters: Comparison of design methods
,”
ARLO
4
,
59
64
(
2003
).
27.
J. E.
Appel
, “
Loudness models for rehabilitative audiology
,” Ph.D. dissertation,
University of Oldenburg
, Oldenburg, Germany,
2002
, Chap. 4.
28.
B. R.
Glasberg
and
B. C. J.
Moore
, “
A model of loudness applicable to time-varying sounds
,”
J. Audio Eng. Soc.
50
,
331
342
(
2002
).
29.
ANSI,
Specifications for Audiometers 3.6
(
American National Standards Institute
, New York,
1996
.
30.
L.
Kukolich
and
R.
Lippmann
,
LNKnet Users’s Guide: 4th Revision
(
MIT Lincoln Laboratory
, Lexington, MA,
2004
, Chap. 3.
31.
M. J. J.
Scott
,
M.
Niranjan
, and
R. W.
Prager
, “
Parcel: Feature subset selection in variable cost domains
,” Technical Rep. No. TR-323, Cambridge University Engineering Department, Cambridge, UK,
1998
.
32.
R. O.
Duda
,
P. E.
Hart
, and
D. G.
Stork
,
Pattern Classification
, 2nd ed. (
Wiley-Interscience
, Toronto,
2001
), pp.
483
485
.
You do not currently have access to this content.