The grain-shearing (GS) theory of wave propagation in a saturated granular material, such as a marine sediment, is extended to include the effects of the viscosity of the molecularly thin layer of pore fluid separating contiguous grains. An equivalent mechanical system consisting of a saturating, strain-hardening dashpot in series with a Hookean spring represents the intergranular interactions. Designated the VGS theory, the new model returns dispersion curves that differ mildly from those of the GS theory at lower frequencies, below 10kHz, where effects due to the viscosity of the pore fluid may be non-negligible. At higher frequencies, the VGS dispersion curves approach those of the GS theory asymptotically. The VGS theory is shown to match the SAX99 dispersion curves reasonably well over the broad frequency band of the measurements, from 1 to 400kHz. This includes the frequency regime between 1 and 10kHz occupied by Schock’s chirp sonar data, where the viscosity of the pore fluid appears to have a discernible effect on the dispersion curves.

1.
M. J.
Buckingham
, “
Wave propagation, stress relaxation, and grain-to-grain shearing in saturated, unconsolidated marine sediments
,”
J. Acoust. Soc. Am.
108
,
2796
2815
(
2000
).
2.
M. J.
Buckingham
, “
Compressional and shear wave properties of marine sediments: Comparisons between theory and data
,”
J. Acoust. Soc. Am.
117
,
137
152
(
2005
).
3.
K. L.
Williams
,
D. R.
Jackson
,
E. I.
Thorsos
,
D.
Tang
, and
S. G.
Schock
, “
Comparison of sound speed and attenuation measured in a sandy sediment to predictions based on the Biot theory of porous media
,”
IEEE J. Ocean. Eng.
27
,
413
428
(
2002
).
4.
H. J.
Simpson
,
B. H.
Houston
,
S. W.
Liskey
,
P. A.
Frank
,
A. R.
Berdoz
,
L. A.
Kraus
,
C. K.
Frederickson
, and
S.
Stanic
, “
At-sea measurements of sound penetration into sediments using a buried vertical synthetic array
,”
J. Acoust. Soc. Am.
114
,
1281
1290
(
2003
).
5.
B. T.
Hefner
and
K. L.
Williams
, “
Sound speed and attenuation measurements in unconsolidated glass-bead sediments saturated with viscous pore fluids
,”
J. Acoust. Soc. Am.
120
,
2538
2549
(
2006
).
6.
M. A.
Biot
, “
Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range
,”
J. Acoust. Soc. Am.
28
,
168
178
(
1956
).
7.
M. A.
Biot
, “
Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range
,”
J. Acoust. Soc. Am.
28
,
179
191
(
1956
).
8.
M. J.
Buckingham
, “
A three-parameter dispersion relationship for Biot’s fast compressional wave in a marine sediment
,”
J. Acoust. Soc. Am.
116
,
769
776
(
2004
).
9.
M. J.
Buckingham
, “
Causality, Stokes' wave equation and acoustic pulse propagation in a viscous fluid
,”
Phys. Rev. E
72
,
026610
(9) (
2005
).
10.
A. B.
Wood
,
A Textbook of Sound
, 3rd ed. (
Bell
, London,
1964
).
11.
I. S.
Gradshteyn
and
I. M.
Ryzhik
,
Tables of Integrals, Series and Products
(
Academic
, New York,
1980
).
12.
M.
Abramowitz
and
I. A.
Stegun
,
Handbook of Mathematical Functions
(
Dover
, New York,
1965
).
13.
E. I.
Thorsos
,
K. L.
Williams
,
N. P.
Chotiros
,
J.
Christoff
,
K,
Commander
,
C. F.
Greenlaw
,
D. V.
Holliday
,
D. R.
Jackson
,
J. L.
Lopes
,
D. E.
McGehee
,
J. E.
Piper
,
M. D.
Richardson
, and
D.
Tang
, “
An overview of SAX99: Acoustic measurements
,”
IEEE J. Ocean. Eng.
26
,
4
25
(
2001
).
14.
D. R.
Jackson
,
K. L.
Williams
,
E. I.
Thorsos
, and
S. G.
Kargl
, “
High-frequency subcritical acoustic penetration into a sandy sediment
,”
IEEE J. Ocean. Eng.
27
,
346
361
(
2002
).
15.
M. D.
Richardson
,
K. B.
Briggs
,
D. L.
Bibee
,
P. A.
Jumars
,
W. B.
Sawyer
,
D. B.
Albert
,
T. K.
Berger
,
M. J.
Buckingham
,
N. P.
Chotiros
,
P. H.
Dahl
,
N. T.
Dewitt
,
P.
Fleischer
,
R.
Flood
,
C. F.
Greenlaw
,
D. V.
Holliday
,
M. H.
Hulbert
,
M. P.
Hutnak
,
P. D.
Jackson
,
J. S.
Jaffe
,
H. P.
Johnson
,
D. L.
Lavoie
,
A. P.
Lyons
,
C. S.
Martens
,
D. E.
McGehee
,
K. D.
Moore
,
T. H.
Orsi
,
J. N.
Piper
,
R. I.
Ray
,
A. H.
Reed
,
R. F. L.
Self
,
J. L.
Schmidt
,
S. G.
Schock
,
F.
Simonet
,
R. D.
Stoll
,
D. J.
Tang
,
D. E.
Thistle
,
E. I.
Thorsos
,
D. J.
Walter
, and
R. A.
Wheatcrof
, “
Overview of SAX99: Environmental considerations
,”
IEEE J. Ocean. Eng.
26
,
26
53
(
2001
).
16.
R. D.
Stoll
, “
Velocity dispersion in water-saturated granular sediment
,”
J. Acoust. Soc. Am.
111
,
785
793
(
2002
).
17.
M. J.
Buckingham
and
M. D.
Richardson
, “
On tone-burst measurements of sound speed and attenuation in sandy marine sediments
,”
IEEE J. Ocean. Eng.
27
,
429
453
(
2002
).
18.
E. L.
Hamilton
, “
Acoustic properties of sediments
,” in
Acoustics and the Ocean Bottom
, edited by
A.
Lara-Saenz
,
C.
Ranz Cuierra
, and
C.
Carbo-Fité
(
Consejo Superior de Investigacions Cientificas
, Madrid,
1987
), pp.
3
58
.
19.
M. D.
Richardson
, “
In-situ, shallow-water sediment geoacoustic properties
,” in
Shallow-Water Acoustics
, edited by
R.
Zhang
and
J.
Zhou
(
China Ocean Press
, Beijing,
1997
), pp.
163
170
.
20.
B.
Bhushan
,
J. N.
Israelachvili
, and
U.
Landman
, “
Nanotribology: Friction, wear and lubrication at the atomic scale
,”
Nature (London)
,
374
,
607
616
(
1995
).
21.
S.
Granick
, “
Soft matter in a tight spot
,”
Phys. Today
52
,
26
31
(
1999
).
You do not currently have access to this content.