A frequency-domain finite-element (FE) technique for computing the radiation and scattering from axially symmetric fluid-loaded structures subject to a nonsymmetric forcing field is presented. The Bérenger perfectly matched layer (PML), applied directly at the fluid-structure interface, makes it possible to emulate the Sommerfeld radiation condition using FE meshes of minimal size. For those cases where the acoustic field is computed over a band of frequencies, the meshing process is simplified by the use of a wavelength-dependent rescaling of the PML coordinates. Quantitative geometry discretization guidelines are obtained from a priori estimates of small-scale structural wavelengths, which dominate the acoustic field at low to mid frequencies. One particularly useful feature of the PML is that it can be applied across the interface between different fluids. This makes it possible to use the present tool to solve problems where the radiating or scattering objects are located inside a layered fluid medium. The proposed technique is verified by comparison with analytical solutions and with validated numerical models. The solutions presented show close agreement for a set of test problems ranging from scattering to underwater propagation.

1.
L. L.
Thompson
, “
A review of finite-element methods for time-harmonic acoustics
,”
J. Acoust. Soc. Am.
119
,
1315
1330
(
2006
).
2.
A.
Sommerfeld
, “
Die Greensche Funktion der Schwingungsgleichung
” (“The Green’s function of the oscillation equation”),
Jahresber. Deutsch. Math. Ver.
21
,
309
353
(
1912
).
3.
J. J.
Shirron
and
I.
Babuska
, “
A comparison of approximate boundary conditions and infinite element methods for exterior Helmholtz problems
,”
Comput. Methods Appl. Mech. Eng.
164
,
121
139
(
1998
).
4.
D. S.
Burnett
, “
A three-dimensional acoustic infinite element based on a prolate spheroidal multipole expansion
,”
J. Acoust. Soc. Am.
96
,
2798
2816
(
1994
).
5.
J. J.
Shirron
, “
Solution of exterior Helmholtz problems using finite and infinite elements
,” Ph.D. dissertation,
University of Maryland
(
1995
).
6.
J. P.
Bérenger
, “
A perfectly matched layer for the absorption of electromagnetic waves
,”
J. Comput. Phys.
114
,
185
200
(
1994
).
7.
J. P.
Bérenger
, “
Perfectly matched layer for the FDTD solution of wave-structure interaction problems
,”
IEEE Trans. Antennas Propag.
44
,
110
117
(
1996
).
8.
F.
Collino
and
P.
Monk
, “
The perfectly matched layer in curvilinear coordinates
,”
SIAM J. Sci. Comput. (USA)
19
,
2061
2090
(
1998
).
9.
E.
Turkel
and
A.
Yefet
, “
Absorbing PML boundary layers for wave-like equations
,”
Appl. Numer. Math.
27
,
533
557
(
1998
).
10.
Q. H.
Liu
, “
Perfectly matched layers for elastic waves in cylindrical and spherical coordinates
,”
J. Acoust. Soc. Am.
105
,
2075
2084
(
1999
).
11.
F.
Ihlenburg
,
Finite Element Analysis of Acoustic Scattering
(
Springer-Verlag
,
New York
,
1998
).
12.
Q. H.
Liu
and
J.
Tao
, “
The perfectly matched layer for acoustic waves in absorptive media
,”
J. Acoust. Soc. Am.
102
,
2072
2082
(
1997
).
13.
J. J.
Shirron
and
T. E.
Giddings
, “
A finite element model for acoustic scattering from objects near a fluid-fluid interface
,”
Comput. Methods Appl. Mech. Eng.
196
,
279
288
(
2006
).
14.
M.
Zampolli
,
A.
Tesei
, and
J. B.
Blottman
, “
Scattering from axially symmetric objects: Theory, FEMLAB model implementation and results
,” Technical Report No. NURC-FR-2006-010,
NATO Undersea Res. Ctr.
(
2006
).
15.
F. B.
Jensen
,
P. L.
Nielsen
,
M.
Zampolli
,
M. D.
Collins
, and
W. L.
Siegmann
, “
Benchmarking range-dependent seismo-acoustic propagation problems
,” in
Proceedings of the 8th European Conference on Underwater Acoustics
,
Carvoeiro
,
Portugal
(
2006
).
16.
E. L.
Wilson
, “
Structural analysis of axisymmetric solids
,”
AIAA J.
3
,
2269
2274
(
1965
).
17.
O. C.
Zienkiewicz
and
R. L.
Taylor
,
The Finite Element Method
, 4th ed. (
McGraw–Hill
,
London
,
1994
), Vols. I and II.
18.
R. D.
Cook
,
Concepts and Applications of Finite Element Analysis
, 2nd ed. (
Wiley
,
New York
,
1981
).
19.
D. S.
Burnett
,
Finite Element Analysis-from Concepts to Applications
(
Addison-Wesley
,
Reading, MA
,
1988
).
20.
S.
Dey
,
J. J.
Shirron
, and
L. S.
Couchman
, “
Mid-frequency structural acoustic and vibration analysis in arbitrary, curved three-dimensional domains
,”
Comput. Struct.
79
,
617
629
(
2001
).
21.
J. P.
Bérenger
, “
Application of the CFS PML to the absorption of evanescent waves in waveguides
,”
IEEE Microw. Wirel. Compon. Lett.
12
,
218
220
(
2002
).
22.
Y. Q.
Zeng
and
Q. H.
Liu
, “
A staggered-grid finite-difference method with perfectly matched layers for poroelastic wave equations
,”
J. Acoust. Soc. Am.
109
,
2571
2580
(
2001
).
23.
O. B.
Matar
,
V.
Preobrazhensky
, and
P.
Pernod
, “
Two-dimensional axisymmetric numerical simulation of supercritical phase conjugation of ultrasound in active solid media
,”
J. Acoust. Soc. Am.
118
,
2880
2890
(
2005
).
24.
D. T.
DiPerna
and
D.
Feit
, “
An approximate analytic solution for the radiation from a line-driven fluid-loaded plate
,”
J. Acoust. Soc. Am.
110
,
3018
3024
(
2001
).
25.
S. G.
Kargl
and
P. L.
Marston
, “
Observations and modeling of the backscattering of short tone bursts from a spherical shell: Lamb wave echoes, glory, and axial reverberations
,”
J. Acoust. Soc. Am.
85
,
1014
1028
(
1989
).
26.
G. S.
Sammelmann
,
D. H.
Trivett
, and
R. H.
Hackman
, “
The acoustic scattering by a submerged spherical shell. I: The bifurcation of the dispersion curve for the spherical axisymmetric Lamb wave
,”
J. Acoust. Soc. Am.
85
,
114
124
(
1989
).
27.
J. D.
Kaplunov
,
L. Y.
Kossovich
, and
E. V.
Nolde
,
Dynamics of Thin Walled Elastic Bodies
(
Academic
,
San Diego
,
1998
).
28.
J. D.
Achenbach
,
Wave Propagation in Elastic Solids
(
North-Holland
,
Amsterdam
,
1993
).
29.
D. S.
Burnett
and
M.
Zampolli
, “
FESTA: A 3-D finite element program for acoustic scattering from undersea targets
,” Technical Report No. SR-394,
NATO Undersea Res. Ctr.
(
2004
).
30.
A. D.
Pierce
,
Acoustics-An Introduction to its Physical Principles and Applications
(
Acoustical Society of America
, Melville, NY,
1991
).
31.
A. D.
Pierce
, “
Variational formulations in acoustic radiation and scattering
,”
Physical Acoustics
(
Academic
,
San Diego
,
1993
), Vol. XXII.
32.
G. C.
Everstine
, “
A symmetric potential formulation for fluid-structure interaction
,”
J. Sound Vib.
79
,
157
160
(
1981
).
33.
G. C.
Everstine
, “
Finite element formulations of structural acoustics problems
,”
Comput. Struct.
65
,
307
321
(
1997
).
34.
N. D.
Veksler
,
Resonance Acoustic Spectroscopy
(
Springer-Verlag
,
Berlin
,
1993
).
35.
J. P.
Bérenger
, “
Evanescent waves in PML’s: Origin of the numerical reflection in wave-structure interaction problems
,”
IEEE Trans. Antennas Propag.
47
,
1497
1503
(
1999
).
36.
M. C.
Junger
and
D.
Feit
,
Sound, Structures, and Their Interaction
(
MIT Press
,
Cambridge
,
1972
).
37.
A.
Bayliss
,
M.
Gunzberger
, and
E.
Turkel
, “
Boundary conditions for the numerical solution of elliptic equations in exterior regions
,”
SIAM J. Appl. Math.
42
,
430
451
(
1982
).
38.
COMSOL AB, Stockholm
,
COMSOL Multiphysics 3.2—User’s Guide
(
2005
), http://www.comsol.com. Last viewed 8/13/07.
39.
P. M.
Morse
and
K. U.
Ingard
,
Theoretical Acoustics
(
McGraw-Hill
,
New York
,
1968
).
40.
M.
Abramowitz
and
I. A.
Stegun
,
Handbook of Mathematical Functions
(
National Bureau of Standards
,
Washington D.C.
,
1968
).
41.
M.
Zampolli
,
A.
Tesei
,
F. B.
Jensen
, and
J. B.
Blottman
, “
Finite element and hybrid modeling tools for the detection and classification of buried objects in shallow water
,” in
Proc. Conf. on Boundary Influences in High Frequency Shallow Water Acoustics
, edited by
N.
Pace
and
P.
Blondel
(
University of Bath
,
UK
,
2005
), pp.
349
356
.
42.
F. B.
Jensen
,
W. A.
Kuperman
,
M. B.
Porter
, and
H.
Schmidt
,
Computational Ocean Acoustics
(
Springer-Verlag
,
New York
,
2000
).
43.
M. D.
Collins
, “
A split-step Padé solution for the parabolic equation method
,”
J. Acoust. Soc. Am.
93
,
1736
1742
(
1993
).
44.
H.
Schmidt
and
J.
Glattetre
, “
A fast field model for the three-dimensional wave propagation in stratified environments based on the global matrix method
,”
J. Acoust. Soc. Am.
78
,
2105
2114
(
1985
).
45.
I.
Lucifredi
and
H.
Schmidt
, “
Subcritical scattering from buried elastic shells
,”
J. Acoust. Soc. Am.
120
,
3566
3583
(
2006
).
46.
P.
Avery
,
C.
Farhat
, and
G.
Reese
, “
Fast frequency sweep computations using a multipoint Padé-based reconstruction method and an efficient iterative solver
,”
Int. J. Numer. Methods Eng.
69
,
2848
2875
, (
2007
).
You do not currently have access to this content.