Diffraction corrections to scalar wave fields at perfectly free and rigid rough surfaces were derived by two iterations of the corresponding integral equations. These diffraction corrections to the pressure or normal velocity (which, in the geometrical optics limit, are doubled at perfectly rigid and free surfaces, respectively) were obtained with an accuracy of , where is the wave number of incidence radiation. Based on these corrections to the surface fields, the backscattering cross sections at normal incidence from the statistically rough Gaussian surfaces were derived. It was found that for the gentle roughness, diffraction results in effective “smoothing” of roughness for rigid and free surfaces and increasing of the backscattering cross sections, but for a rigid surface with steep roughness, the “fictitious” surface can be more rough than the real one, and the diffraction corrections become negative.
Skip Nav Destination
Article navigation
September 2007
September 01 2007
High-frequency diffraction corrections to backscattering cross sections from a rough three-dimensional surface
Iosif Fuks
Iosif Fuks
a)
Zel Technologies
, LLC and NOAA/Earth System Research Laboratory, 325 Broadway, R/PSD-99, Boulder, Colorado 80305
Search for other works by this author on:
a)
Electronic mail: iosif.fuks@noaa.gov
J. Acoust. Soc. Am. 122, 1463–1471 (2007)
Article history
Received:
March 02 2007
Accepted:
June 15 2007
Citation
Iosif Fuks; High-frequency diffraction corrections to backscattering cross sections from a rough three-dimensional surface. J. Acoust. Soc. Am. 1 September 2007; 122 (3): 1463–1471. https://doi.org/10.1121/1.2756794
Download citation file:
Sign in
Don't already have an account? Register
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Pay-Per-View Access
$40.00
Citing articles via
A survey of sound source localization with deep learning methods
Pierre-Amaury Grumiaux, Srđan Kitić, et al.
Short-time coherence between repeated room impulse response measurements
Karolina Prawda, Sebastian J. Schlecht, et al.
Efficient design of complex-valued neural networks with application to the classification of transient acoustic signals
Vlad S. Paul, Philip A. Nelson