Diffraction corrections to scalar wave fields at perfectly free and rigid rough surfaces were derived by two iterations of the corresponding integral equations. These diffraction corrections to the pressure or normal velocity (which, in the geometrical optics limit, are doubled at perfectly rigid and free surfaces, respectively) were obtained with an accuracy of 1k2, where k is the wave number of incidence radiation. Based on these corrections to the surface fields, the backscattering cross sections at normal incidence from the statistically rough Gaussian surfaces were derived. It was found that for the gentle roughness, diffraction results in effective “smoothing” of roughness for rigid and free surfaces and increasing of the backscattering cross sections, but for a rigid surface with steep roughness, the “fictitious” surface can be more rough than the real one, and the diffraction corrections become negative.

1.
A. D.
Pierce
,
Acoustics
(
Acoustical Society of America
, New York,
1994
).
2.
L. M.
Brekhovskikh
and
Yu. P.
Lysanov
,
Fundamentals of Ocean Acoustics
(
Springer
, Berlin,
2003
).
3.
F. B.
Jensen
,
W. A.
Kuperman
,
M. B.
Porter
, and
H.
Schmidt
,
Computational Ocean Acoustics
(
Springer
, New York,
2000
).
4.
L.
Tsang
,
J. A.
Kong
,
K. H.
Ding
, and
C. O.
Ao
,
Scattering of Electromagnetic Waves: Numerical Simulations
(
Wiley
, New York,
2001
).
5.
K. E.
Warnick
and
W. C.
Chew
, “
Numerical simulation methods for rough surface scattering
,”
Waves Random Media
11
,
R1
R29
(
2001
).
6.
P. M.
Morse
and
H.
Feshbach
,
Methods of Theoretical Physics, Part I
(
McGraw-Hill
, New York,
1953
).
7.
J. J.
Bowman
,
T. B. A.
Senior
, and
P. L. E.
Uslenghi
,
Electromagnetic and Acoustic Scattering by Simple Shapes
(
Hemisphere
, New York,
1987
).
8.
J. B.
Keller
,
R. M.
Lewis
, and
B. D.
Seckler
, “
Asymptotic solution of some diffraction problems
,”
Commun. Pure Appl. Math.
9
,
207
265
(
1956
).
9.
J. B.
Keller
, “
Geometrical theory of diffraction
,”
J. Opt. Soc. Am.
52
,
116
130
(
1962
).
10.
V. M.
Babič
and
V. S.
Buldyrev
,
Short-Wavelength Diffraction Theory
(
Springer
, Berlin,
1991
).
11.
V. A.
Borovikov
and
B. Ye.
Kinber
,
Geometrical Theory of Diffraction
(
The Institution of Electrical Engineers
, London,
1994
).
12.
Yu. A.
Kravtsov
and
Yu. I.
Orlov
,
Geometrical Optics of Inhomogeneous Media
(
Springer
, Berlin,
1990
).
13.
C. E.
Schensted
, “
Electromagnetic and acoustical scattering by a semi-infinite body of revolution
,”
J. Appl. Phys.
26
,
306
308
(
1955
).
14.
S. W.
Lee
, “
Electromagnetic reflection from a conducting surface: Geometrical optics solution
,”
IEEE Trans. Antennas Propag.
AP-23
,
184
191
(
1975
).
15.
P.
Beckmann
and
W. K.
Spizzichino
,
The Scattering of Electromagnetic Waves from Rough Surfaces
(
Pergamon
, Oxford,
1963
).
16.
F. G.
Bass
and
I. M.
Fuks
,
Wave Scattering from Statistically Rough Surfaces
(
Nauka
, Moscow, 1972, in Russian); English translation: International Series in Natural Philosophy, edited by
C. B.
Vesecky
and
J. F.
Vesecky
(
Pergamon
, Oxford,
1978
), Vol.
93
.
17.
A. G.
Voronovich
,
Wave Scattering from Rough Surfaces
, 2nd ed. (
Springer
, Berlin,
1999
).
18.
L. M.
Brekhovskikh
, “
Wave diffraction by rough surface
,”
Zh. Eksp. Teor. Fiz.
23
,
275
278
(
1952
);
L. M.
Brekhovskikh
, “
Wave diffraction by rough surface
,”
Zh. Eksp. Teor. Fiz.
23
,
289
304
(
1952
).
19.
M. A.
Isakovich
, “
Wave scattering from a statistically rough surface
,”
Zh. Eksp. Teor. Fiz.
23
,
305
314
(
1952
).
20.
T. M.
Elfouhaily
and
C. A.
Guérin
, “
A critical survey of approximate scattering wave theories from random rough surfaces
,”
Waves Random Media
14
,
R1
R40
(
2004
).
21.
P. J.
Lynch
, “
Curvature corrections to rough-surface scattering at high frequencies
,”
J. Acoust. Soc. Am.
47
,
804
815
(
1970
).
22.
E.
Rodrígues
, “
Beyond the Kirchhoff approximation
,”
Radio Sci.
24
,
681
693
(
1989
).
23.
E.
Rodrígues
, “
Beyond the Kirchhoff approximation II. Electromagnetic scattering
,”
Radio Sci.
26
,
121
132
(
1991
).
24.
T.
Elfouhaily
,
M.
Joelson
,
S.
Guingnard
, and
D. R.
Tompson
, “
Analytical comparison between the surface current integral equation and the second-order small-slope approximation
,”
Waves Random Media
13
,
165
176
(
2003
).
25.
T.
Elfouhaily
,
S.
Guingnard
,
R.
Awadallah
, and
D. R.
Tompson
, “
Local and non-local curvature approximation: A new asymptotic theory for wave scattering
,”
Waves Random Media
13
,
321
3338
(
2003
).
26.
T.
Elfouhaily
,
S.
Guingnard
, and
D. R.
Tompson
, “
Formal tilt invariance of the local curvature approximation
,”
Waves Random Media
13
,
L7
L11
(
2003
).
27.
T. M.
Elfouhaily
and
J. T.
Johnson
, “
Extension of the local curvature approximation to third order and improved tilt invariance
,”
Waves Random Complex Media
16
,
97
119
(
2006
).
28.
M. I.
Charnotskii
and
V. I.
Tatarskii
, “
Tilt-invariant theory of scattering by rough surface
,”
Waves Random Media
5
,
361
380
(
1995
).
29.
V. A.
Fok
,
Electromagnetic Diffraction and Propagation Problems
(
Pergamon
, Oxford,
1965
).
30.
I. M.
Fuks
, “
High-frequency asymptotic expansions of a backscattered cross section and HHVV polarization ratio for smooth two-dimensional surfaces
,”
Waves Random Media
14
,
143
156
(
2004
).
31.
I. M.
Fuks
, “
Asymptotic solutions for backscattering by smooth 2-D surfaces
,”
Prog. Electromagn. Res.
53
,
189
226
(
2005
).
32.
I. M.
Fuks
, “
High-frequency asymptotic solutions for backscattering by cylinders with conic section directrices
,”
IEEE Trans. Antennas Propag.
53
,
1653
1662
(
2005
).
33.
I.
Fuks
, “
Diffraction corrections to fields specularly reflected by a smooth 2-D surface
,”
IEEE Trans. Antennas Propag.
54
,
2703
2712
(
2006
).
34.
W.
Feller
,
An Introduction to Probability Theory and its Applications
(
Wiley
, New York,
1966
).
You do not currently have access to this content.