Intracochlear pressure is calculated from a physiologically based, three-dimensional gerbil cochlea model. Olson [J. Acoust. Soc. Am.103, 34453463 (1998); 110, 349367 (2001)] measured gerbil intracochlear pressure and provided approximations for the following derived quantities: (1) basilar membrane velocity, (2) pressure across the organ of Corti, and (3) partition impedance. The objective of this work is to compare the calculations and measurements for the pressure at points and the derived quantities. The model includes the three-dimensional viscous fluid and the pectinate zone of the elastic orthotropic basilar membrane with dimensional and material property variation along its length. The arrangement of outer hair cell forces within the organ of Corti cytoarchitecture is incorporated by adding the feed-forward approximation to the passive model as done previously. The intracochlear pressure consists of both the compressive fast wave and the slow traveling wave. A Wentzel–Kramers–Brillowin asymptotic and numerical method combined with Fourier series expansions is used to provide an efficient procedure that requires about 1s to compute the response for a given frequency. Results show reasonably good agreement for the direct pressure and the derived quantities. This confirms the importance of the three-dimensional motion of the fluid for an accurate cochlear model.

2.
Böhnke
,
F.
, and
Arnold
,
W.
(
1998
). “
Nonlinear mechanics of the organ of Corti caused by Deiters cells
,”
IEEE Trans. Biomed. Eng.
45
,
1227
1233
.
3.
Cabezudo
,
L. M.
(
1978
). “
The ultrastructure of the basilar membrane in the cat
,”
Acta Oto-Laryngol.
86
,
160
175
.
4.
Cohen
,
Y. E.
,
Bacon
,
C. K.
, and
Saunders
,
J. C.
(
1992
). “
Middle ear development III. Morphometric changes in the conducting apparatus of the Mongolian gerbil
,”
Hear. Res.
62
,
187
193
.
5.
Cooper
,
N. P.
, and
Rhode
,
W. S.
(
1992a
). “
Basilar membrane mechanics in the hook region of cat and guinea-pig cochlea: Sharp tuning and nonlinearity in the absence of baseline position shifts
,”
Hear. Res.
63
,
163
190
.
6.
Cooper
,
N. P.
, and
Rhode
,
W. S.
(
1992b
). “
Basilar membrane tonotopicity in the hook region of the cat cochlea
,”
Hear. Res.
63
,
191
196
.
8.
Dannhof
,
B. J.
,
Roth
,
B.
, and
Bruns
,
V.
(
1991
). “
Length of hair cells as a measure of frequency representation in the mammalian inner ear
,”
Naturwiss.
78
,
570
573
.
9.
de Boer
,
E.
(
1983
). “
On active and passive cochlear models: Towards a generalized analysis
,”
J. Acoust. Soc. Am.
73
,
574
576
.
10.
Dong
,
W.
, and
Olson
,
E. S.
(
2007
). “
Relating intracochlear pressure to cochlea emissions
,” 30th ARO Midwinter Research Meeting, Denver, CO.
11.
Edge
,
R. M.
,
Evans
,
B. N.
,
Pearce
,
M.
,
Richter
,
C. P.
,
Hu
,
X.
, and
Dallos
,
P. S.
(
1998
). “
Morphology of the unfixed cochlea
,”
Hear. Res.
124
,
1
16
.
13.
Geisler
,
C. D.
, and
Sang
,
C.
(
1995
). “
A cochlear model using feed-forward outer-hair-cell forces
,”
Hear. Res.
86
,
132
146
.
14.
Greenwood
,
D. D.
(
1990
). “
A cochlear frequency-position function for several species-29years later
,”
J. Acoust. Soc. Am.
87
,
2592
2605
.
15.
Kanis
,
L. J.
, and
de Boer
,
E.
(
1996
). “
Comparing frequency-domain with time-domain solutions for a locally active nonlinear model of the cochlea
,”
J. Acoust. Soc. Am.
100
,
2543
2546
.
16.
Kanis
,
L. J.
, and
de Boer
,
E.
(
1997
). “
Frequency dependence of acoustic distortion products in a locally active model of the cochlea
,”
J. Acoust. Soc. Am.
101
,
1527
1531
.
17.
Karavitaki
,
K. D.
(
2002
). “
Measurements and models of electrically-evoked motion in the gerbil organ of Corti
,” Ph.D. thesis,
MIT
, Cambridge.
18.
Khanna
,
S. M.
, and
Leonard
,
D. G. B.
(
1986
). “
Relationship between basilar membrane tuning and hair cell condition
,”
Hear. Res.
23
,
55
70
.
19.
Kolston
,
P. J.
, and
Ashmore
,
J. F.
(
1996
). “
Finite element micromechanical modeling of the cochlea in three dimensions
,”
J. Acoust. Soc. Am.
99
,
455
467
.
20.
Lim
,
D. J.
(
1980
). “
Cochlear anatomy related to cochlear micromechanics A review
,”
J. Acoust. Soc. Am.
67
,
1686
1695
.
21.
Lim
,
K. M.
, and
Steele
,
C. R.
(
2002
). “
A three-dimensional nonlinear active cochlear model analyzed by the WKB-numeric method
,”
Hear. Res.
170
,
190
205
.
22.
Loh
,
C. H.
(
1983
). “
Multiple scale analysis of the spirally coiled cochlea
,”
J. Acoust. Soc. Am.
74
,
95
103
.
23.
Miller
,
C. E.
(
1985
). “
Structural implications of basilar membrane compliance measurements
,”
J. Acoust. Soc. Am.
77
,
1465
1474
.
24.
Neely
,
S. T.
(
1985
). “
Mathematical modeling of cochlear mechanics
,”
J. Acoust. Soc. Am.
78
,
345
352
.
25.
Neely
,
S. T.
(
1993
). “
A model of cochlear mechanics with outer hair cell motility
,”
J. Acoust. Soc. Am.
94
,
137
146
.
26.
Nuttall
,
A. L.
, and
Dolan
,
D. F.
(
1996
). “
Steady-state sinusoidal responses of the basilar membrane in guinea pig
,”
J. Acoust. Soc. Am.
99
,
1556
1565
.
27.
Olson
,
E. S.
(
1998
). “
Observing middle and inner ear mechanics with novel intacochlea pressure sensors
,”
J. Acoust. Soc. Am.
103
,
3445
3463
.
28.
Olson
,
E. S.
(
2001
). “
Intracochlear pressure measurements related to cochlear tuning
,”
J. Acoust. Soc. Am.
110
,
349
367
.
29.
Overstreet
,
E. H.
,
Temchin
,
A. N.
, and
Ruggero
,
M. A.
(
2002
). “
Basilar membrane vibrations near the round window of the gerbil cochlea
,”
J. Assoc. Res. Otolaryngol.
3
,
351
361
.
30.
Parthasarathi
,
A. A.
,
Grosh
,
K.
, and
Nuttall
,
A. L.
(
2000
). “
Three-dimensional numerical modeling for global cochlear dynamics
,”
J. Acoust. Soc. Am.
107
,
474
485
.
31.
Peterson
,
L. C.
, and
Bogert
,
B. P.
(
1950
). “
A dynamic theory of the cochlea
,”
J. Acoust. Soc. Am.
22
,
369
381
.
32.
Ren
,
T.
, and
Nuttall
,
A. L.
(
2001
). “
Basilar membrane vibration in the basal turn of the sensitive gerbil cochlea
,”
Hear. Res.
151
,
48
60
.
33.
Ruggero
,
M. A.
,
Rich
,
N. C.
,
Recio
,
A.
,
Narayan
,
S. S.
, and
Robles
,
L.
(
1997
). “
Basilar membrane responses to tones at the base of the chinchilla cochlea
,”
J. Acoust. Soc. Am.
101
,
2151
2163
.
34.
Ruggero
,
M. A.
,
Rich
,
N. C.
,
Robles
,
L.
, and
Recio
,
A.
(
1996
). “
The effects of acoustic trauma, other cochlear injury, and death on basilar-membrane responses to sound
,” in
Scientific Basis of Noise-Induced Hearing Loss
, edited by
A.
Axelsson
 et al. (
Thieme Medical
,
New York
), pp.
23
35
.
35.
Schweitzer
,
L.
,
Lutz
,
C.
,
Hobbs
,
M.
, and
Weaver
,
S. P.
(
1996
). “
Anatomical correlates of the passive properties underlying the developmental shift in the frequency map of the mammalian cochlea
,”
Hear. Res.
97
,
84
94
.
36.
Shera
,
C. A.
(
2001
). “
Intensity-invariance of fine time structure in basilar-membrane click responses: Implications for cochlear mechanics
,”
J. Acoust. Soc. Am.
110
,
332
348
.
37.
Smith
,
C. A.
(
1968
). “
Ultrastructure of the organ of Corti
,”
Adv. Sci.
24
,
419
433
.
38.
Sokolich
,
W. G.
,
Hamernik
,
R. P.
,
Zwisiocki
,
J. J.
, and
Schmiedt
,
R. A.
(
1976
). “
lnferred response polarities of cochlear hair cells
,”
J. Acoust. Soc. Am.
59
,
963
979
.
39.
Stankovic
,
K. M.
, and
Guinan
,
J. J.
(
1999
). “
Medial efferent effects on auditory-nerve responses to tail-frequency tones. I. Rate reduction
,”
J. Acoust. Soc. Am.
106
,
857
869
.
40.
Stankovic
,
K. M.
, and
Guinan
,
J. J.
(
2000
). “
Medial efferent effects on auditory-nerve responses to tail-frequency tones. II. Alteration of phase
,”
J. Acoust. Soc. Am.
108
,
664
678
.
41.
Steele
,
C. R.
,
Baker
,
G.
,
Tolomeo
,
J.
, and
Zetes
,
D.
(
1993
). “
Electro-mechanical models of the outer hair cell
,” in
Proceedings of the International Symposium on Biophysics of Hair Cell Sensory Systems
, edited by
H.
Duifhuis
,
J. W.
Horst
,
P.
van Dijk
, and
S. M.
van Netten
(
World Scientific
,
Singapore
), pp.
207
215
.
42.
Steele
,
C. R.
,
Baker
,
G.
,
Tolomeo
,
J.
, and
Zetes
,
D.
(
1995
). “
Cochlear mechanics
,” in
The Biomedical Engineering Handbook
, edited by
Z. D.
Bronzino
(
CRC Press
,
New York
), pp.
505
516
.
43.
Steele
,
C. R.
, and
Lim
,
K. M.
(
1999
). “
Cochlear model with three-dimensional fluid, inner sulcus and feed-forward mechanism
,”
Audiol. Neuro-Otol.
4
,
197
203
.
44.
Steele
,
C. R.
, and
Puria
,
S.
(
2005
). “
Force on inner hair cell cilia
,”
Int. J. Solids Struct.
42
,
5887
5904
.
45.
Steele
,
C. R.
, and
Taber
,
L. A.
(
1979
) “
Comparison of WKB calculations and experimental results for three-dimensional cochlear models
,”
J. Acoust. Soc. Am.
65
,
1007
1018
.
46.
Steele
,
C. R.
, and
Zais
,
J. G.
(
1985
). “
Comparison of WKB calculations and experimental results for three-dimensional cochlear models
,”
J. Acoust. Soc. Am.
77
,
1849
1852
.
47.
Thorne
,
M.
,
Salt
,
A. N.
,
DeMott
,
J. E.
,
Henson
,
M. M.
,
Henson
,
O. W.
, Jr.
, and
Gewalt
,
S. L.
(
1999
). “
Cochlear fluid space dimensions for six species derived from reconstructions of three-dimensional magnetic resonance images
,”
Laryngoscope
109
,
1661
1668
.
48.
Xue
,
S.
,
Mountain
,
D. C.
, and
Hubbard
,
A. E.
(
1995
). “
Electrically evoked basilar membrane motion
,”
J. Acoust. Soc. Am.
97
,
3030
3041
.
49.
Yoon
,
Y. J.
,
Puria
,
S.
, and
Steele
,
C. R.
(
2006
). “
Intracochlear pressure and organ of Corti impedance from a linear active three-dimensional model
,”
ORL
68
,
365
372
.
You do not currently have access to this content.