A highly efficient frequency-controlled sound source based on a tunable high-Q underwater acoustic resonator is described. The required spectrum width was achieved by transmitting a linear frequency-modulated signal and simultaneously tuning the resonance frequency, keeping the sound source in resonance at the instantaneous frequency of the signal transmitted. Such sound sources have applications in ocean-acoustic tomography and deep-penetration seismic tomography. Mathematical analysis and numerical simulation show the Helmholtz resonator’s ability for instant resonant frequency switching and quick adjustment of its resonant frequency to the instantaneous frequency signal. The concept of a quick frequency adjustment filter is considered. The discussion includes the simplest lumped resonant source as well as the complicated distributed system of a tunable organ pipe. A numerical model of the tunable organ pipe is shown to have a form similar to a transmission line segment. This provides a general form for the principal results, which can be applied to tunable resonators of a different physical nature. The numerical simulation shows that the “state-switched” concept also works in the high-Q tunable organ pipe, and the speed of frequency sweeping in a high-Q tunable organ pipe is analyzed. The simulation results were applied to a projector design for ocean-acoustic tomography.

1.
W. H.
Munk
and
C.
Wunsch
, “
Ocean acoustic tomography: A scheme for large-scale monitoring
,”
Deep-Sea Res., Part A
26
,
123
161
(
1979
).
2.
P. F.
Worcester
,
R. C.
Spindel
, and
B. W.
Howe
, “
Reciprocal acoustic transmissions: Instrumentation for mesoscale monitoring of ocean currents
,”
IEEE J. Ocean. Eng.
10
,
123
137
(
1985
).
3.
G. R.
Potty
,
J. H.
Miller
,
J. F.
Lynch
, and
K. B.
Smith
, “
Tomographic inversion for sediment parameters in shallow water
,”
J. Acoust. Soc. Am.
108
,
973
986
(
2000
).
4.
T. H.
Ensign
and
D. C.
Webb
, “
Electronic performance modeling of the gas-filled bubble projector
,”
Proceedings of the Third International Workshop on Transducers for Sonic and Ultrasonics
, 6–8 May, Orlando, FL, pp.
268
275
,
1992
.
5.
R. S.
Woollett
, “
Basic problems caused by depth and size constraints in low-frequency underwater transducers
,”
J. Acoust. Soc. Am.
68
,
1031
1037
(
1980
).
6.
O. B.
Wilson
,
Introduction to the Theory and Design of Sonar Transducers
(
Peninsula
, Los Altos,
1988
).
7.
G. W.
McMahon
, “
Performance of open ferroelectric ceramic rings in underwater transducers
,”
J. Acoust. Soc. Am.
36
,
528
533
(
1964
).
8.
J. B.
Lee
, “
Low-frequency resonant-tube projector for underwater sound
,” in
Proceedings IEEE Ocean’74
, Nova Scotia, Halifax, 21–23 August, Vol.
2
, pp.
10
15
,
1974
.
9.
T. J.
Rossby
,
J.
Ellis
, and
D. C.
Webb
, “
An efficient sound source for wide area RAFOS navigation
,”
J. Atmos. Ocean. Technol.
10
,
397
403
(
1993
).
10.
G. D.
Larson
,
P. H.
Rogers
, and
W.
Munk
, “
State switched transducers: A new approach to high-power, low-frequency, underwater projectors
,”
J. Acoust. Soc. Am.
103
,
1428
1441
(
1998
).
11.
H. A. B.
Alwi
,
J. R.
Carey
, and
B. V.
Smith
, “
Chirp response of an active-controlled thickness-drive tunable transducer
,”
J. Acoust. Soc. Am.
107
,
1363
1373
(
2000
).
12.
G. A.
Steel
,
B. V.
Smith
, and
B. K.
Gazey
, “
Tunable sonar transducer
,”
Electron. Lett.
22
,
758
759
(
1986
).
13.
G. A.
Steel
,
B. V.
Smith
, and
B. K.
Gazey
, “
Active electronic-control of the response of a sonar transducer
,”
Proc. Inst. Acoust.
9
,
79
87
(
1987
).
14.
S. K.
Jain
and
B. V.
Smith
, “
Tunable sandwich transducer
,”
Electron. Lett.
24
,
311
312
(
1988
).
15.
W.
Chenghao
and
Z.
Zheying
, “
Principle of piezoelectric-tunable transducer
,”
Chin. J. Acoust.
2
,
16
24
(
1983
).
16.
B. A.
Kasatkin
and
N. Y.
Pavin
, “
Piezoelectric transducer with controlled response characteristics
,”
Sov. Phys. Acoust.
29
,
418
419
(
1983
).
17.
H. A. B.
Alwi
,
B. V.
Smith
, and
J. R.
Carey
, “
Tunable transducers
,”
Proc. Inst. Acoust.
17
,
173
182
(
1995
).
18.
H. A. B.
Alwi
,
B. V.
Smith
, and
J. R.
Carey
, “
Factors which determine the tunable frequency range of tunable transducers
,”
J. Acoust. Soc. Am.
100
,
840
847
(
1996
).
19.
D. C.
Webb
,
A. K.
Morozov
, and
T. H.
Ensign
, “
A new approach to low frequency wide-band projector design
,”
Proceedings of Oceans
,
2002
, pp.
2342
2349
.
20.
A.
K Morozov
and
D. C.
Webb
, “
A sound projector for acoustic tomography and global ocean monitoring
,”
IEEE J. Ocean. Eng.
28
,
174
185
(
2003
).
21.
A. K.
Morozov
and
D. C.
Webb
, “
Underwater sound source with tunable resonator for ocean acoustic tomography
,”
J. Acoust. Soc. Am.
116
,
2635
(
2004
).
22.
L. D.
Ambs
and
J. J.
Sallas
, “
Marine seismic source
,”
J. Acoust. Soc. Am.
110
,
651
(
2001
).
23.
F.
Liu
,
S. B.
Horowitz
,
T.
Nishida
,
L. N.
Cattafesta
, and
M.
Sheplak
, “
A tunable electromechanical Helmholtz resonator
,” Ninth AIAA/CEAS Aeroacoustics Conference and Exhibit
2003
.
24.
M.
Sheplak
,
L.
Cattafesta
,
T.
Nishida
, and
S. B.
Horowitz
, U. S. Patent No. 6,782,109,
2004
.
25.
C. B.
Birdsong
and
C. J.
Radcliffe
, “
A compensated acoustic actuator for systems with strong dynamic pressure coupling
,”
J. Vibr. Acoust.
121
,
89
94
(
1999
).
26.
K.
Nagaya
,
Y.
Hano
, and
A.
Suda
, “
Silencer consisting of two-stage Helmholtz resonator with auto-tuning control
,”
J. Acoust. Soc. Am.
110
,
289
295
(
2001
).
27.
B. L.
Fanning
and
G. W.
McMahon
, U.S. Patent No. 4,855,964, 8 July
1988
.
You do not currently have access to this content.