The temporal response of auditory-nerve (AN) fibers to a steady-state vowel is investigated using a computational auditory-periphery model. The model predictions are validated against a wide range of physiological data for both normal and impaired fibers in cats. The model incorporates two parallel filter paths, component 1 (C1) and component 2 (C2), which correspond to the active and passive modes of basilar membrane vibration, respectively, in the cochlea. The outputs of the two filters are subsequently transduced by two separate functions, added together, and then low-pass filtered by the inner hair cell (IHC) membrane, which is followed by the IHC-AN synapse and discharge generator. The C1 response dominates at low and moderate levels and is responsible for synchrony capture and multiformant responses seen in the vowel responses. The C2 response dominates at high levels and contributes to the loss of synchrony capture observed in normal and impaired fibers. The interaction between C1 and C2 responses explains the behavior of AN fibers in the transition region, which is characterized by two important observations in the vowel responses: First, all components of the vowel undergo the C1/C2 transition simultaneously, and second, the responses to the nonformant components of the vowel become substantial.

1.
Bondy
,
J.
,
Becker
,
S.
,
Bruce
,
I.
,
Trainor
,
L.
, and
Haykin
,
S.
(
2004
). “
A novel signal-processing strategy for hearing-aid design: Neurocompensation
,”
Signal Process.
84
,
1239
1253
.
2.
Brown
,
G. J.
, and
Cooke
,
M.
(
1994
). “
Computational auditory scene analysis
,”
Comput. Speech Lang.
8
,
297
336
.
3.
Bruce
,
I. C.
(
2004
). “
Physiological assessment of contrast-enhancing frequency shaping and multiband compression in hearing aids
,”
Physiol. Meas.
25
,
945
956
.
4.
Bruce
,
I. C.
,
Sachs
,
M. B.
, and
Young
,
E. D.
(
2003
). “
An auditory-periphery model of the effects of acoustic trauma on auditory nerve responses
,”
J. Acoust. Soc. Am.
113
,
369
388
.
5.
Carney
,
L. H.
,
McDuffy
,
M. J.
, and
Shekhter
,
I.
(
1999
). “
Frequency glides in the impulse responses of auditory-nerve fibers
,”
J. Acoust. Soc. Am.
105
,
2384
2391
.
6.
Cheatham
,
M. A.
, and
Dallos
,
P.
(
1998
). “
The level dependence of response phase: Observations from cochlear hair cells
,”
J. Acoust. Soc. Am.
104
,
356
369
.
7.
Cooper
,
N. P.
, and
Rhode
,
W. S.
(
1995
). “
Nonlinear mechanics at the apex of the guinea-pig cochlea
,”
Hear. Res.
82
,
225
243
.
8.
Cooper
,
N. P.
, and
Rhode
,
W. S.
(
1997
). “
Mechanical responses to two-tone distortion products in the apical and basal turns of the mammalian cochlea
,”
J. Neurophysiol.
78
,
261
270
.
9.
Delgutte
,
B.
(
1980
). “
Representation of speech-like sounds in the discharge patterns of auditory-nerve fibers
,”
J. Acoust. Soc. Am.
68
,
843
857
.
10.
Delgutte
,
B.
, and
Kiang
,
N. Y. S.
(
1984
). “
Speech coding in the auditory nerve. V. Vowels in background noise
,”
J. Acoust. Soc. Am.
75
,
908
918
.
11.
Deng
,
L.
, and
Geisler
,
C. D.
(
1987a
). “
A composite auditory model for processing speech sounds
,”
J. Acoust. Soc. Am.
82
,
2001
2012
.
12.
Deng
,
L.
, and
Geisler
,
C. D.
(
1987b
). “
Responses of auditory-nerve fibers to nasal consonant-vowel syllables
,”
J. Acoust. Soc. Am.
82
,
1977
1988
.
13.
Geisler
,
C. D.
(
1989
). “
The responses of models of ‘high-spontaneous’ auditory-nerve fibers in a damaged cochlea to speech syllables in noise
,”
J. Acoust. Soc. Am.
86
,
2192
2205
.
14.
Ghitza
,
O.
(
1988
). “
Temporal non-place information in the auditory-nerve firing patterns as a front-end for speech recognition in a noisy environment
,”
J. Phonetics
16
,
109
123
.
15.
Glasberg
,
B. R.
, and
Moore
,
B. C. J.
(
1986
). “
Auditory filter shapes in subjects with unilateral and bilateral cochlear impairments
,”
J. Acoust. Soc. Am.
79
,
1020
1033
.
16.
Goldstein
,
J. L.
(
1990
). “
Modeling rapid waveform compression on the basilar membrane as multiple-bandpass-nonlinearity filtering
,”
Hear. Res.
49
,
39
60
.
17.
Goldstein
,
J. L.
(
1995
). “
Relations among compression, suppression, and combination tones in mechanical responses of the basilar membrane: Data and MBPNL model
,”
Hear. Res.
89
,
52
68
.
18.
Hewitt
,
M. J.
, and
Meddis
,
R.
(
1992
). “
Regularity of cochlear neucleus stellate cells: A computational modeling study
,”
J. Acoust. Soc. Am.
93
,
3390
3399
.
19.
Holmes
,
S. D.
,
Summer
,
C. J.
,
O’Mard
,
L. P.
, and
Meddis
,
R.
(
2004
). “
The temporal representation of speech in a nonlinear model of the guinea pig cochlea
,”
J. Acoust. Soc. Am.
116
,
3534
3545
.
20.
Jenison
,
R. L.
,
Greenberg
,
S.
,
Kluender
,
K. R.
, and
Rhode
,
W. S.
(
1991
). “
A composite model of the auditory periphery for the processing of speech based on the filter response functions of single auditory-nerve fibers
,”
J. Acoust. Soc. Am.
90
,
773
786
.
21.
Khanna
,
S. M.
, and
Hao
,
L. F.
(
1999
). “
Reticular lamina vibrations in the apical turn of a living guinea pig cochlea
,”
Hear. Res.
132
,
15
33
.
22.
Kiang
,
N. Y.-S.
(
1990
). “
Curious oddments of auditory-nerve studies
,”
Hear. Res.
49
,
1
16
.
23.
Liberman
,
M. C.
(
1984
). “
Single-neuron labeling and chronic cochlear pathology. I. Threshold shift and characteristic-frequency shift
,”
Hear. Res.
16
,
33
41
.
24.
Liberman
,
M. C.
, and
Dodds
,
L. W.
(
1984
). “
Single-neuron labeling and chronic cochlear pathology. III. Stereocilia damage and alterations of threshold tuning curves
,”
Hear. Res.
16
,
55
74
.
25.
Liberman
,
M. C.
, and
Kiang
,
N. Y.-S.
(
1984
). “
Single-neuron labeling and chronic cochlear pathology. IV. Stereocilia damage and alterations in rate- and phase-level functions
,”
Hear. Res.
16
,
75
90
.
26.
Lin
,
T.
, and
Goldstein
,
J. L.
(
1995
). “
Quantifying 2-factor phase relations in non-linear responses from low characteristic-frequency auditory-nerve fibers
,”
Hear. Res.
90
,
126
138
.
27.
Lopez-Poveda
,
E. A.
,
Plack
,
C. J.
, and
Meddis
,
R.
(
2003
). “
Cochlear nonlinearity between 500 and 8000Hz in listeners with normal hearing
,”
J. Acoust. Soc. Am.
113
,
951
960
.
28.
Meddis
,
R.
,
O’Mard
,
L. P.
, and
Lopez-Poveda
,
E. A.
(
2001
). “
A computational algorithm for computing nonlinear auditory frequency selectivity
,”
J. Acoust. Soc. Am.
109
,
2852
2861
.
29.
Miller
,
R. L.
,
Calhoun
,
B. M.
, and
Young
,
E. D.
(
1999a
). “
Contrast enhancement improves the representation of /ε/-like vowels in the hearing-impaired auditory nerve
,”
J. Acoust. Soc. Am.
106
,
2693
2708
.
30.
Miller
,
R. L.
,
Calhoun
,
B. M.
, and
Young
,
E. D.
(
1999b
). “
Discriminability of vowel representations in cat auditory-nerve fibers after acoustic trauma
,”
J. Acoust. Soc. Am.
105
,
311
325
.
31.
Miller
,
R. L.
,
Schilling
,
J. R.
,
Franck
,
K. R.
, and
Young
,
E. D.
(
1997
). “
Effects of acoustic trauma on the representation of the vowel /ε/ in cat auditory nerve fibers
,”
J. Acoust. Soc. Am.
101
,
3602
3616
.
32.
Nuttall
,
A. L.
, and
Dolan
,
D. F.
(
1996
). “
Steady-state sinusoidal velocity responses of the basilar membrane in guinea pig
,”
J. Acoust. Soc. Am.
99
,
1556
1564
.
33.
Oxenham
,
A. J.
, and
Plack
,
C. J.
(
1997
). “
A behavioral measure of basilar-membrane nonlinearity in listeners with normal and impaired hearing
,”
J. Acoust. Soc. Am.
101
,
3666
3675
.
34.
Palmer
,
A. R.
(
1990
). “
The representation of the spectra and fundamental frequencies of steady-state single- and double-vowel sounds in the temporal discharge patterns of guinea pig cochlear-nerve fibers
,”
J. Acoust. Soc. Am.
88
,
1412
1426
.
35.
Palmer
,
A. R.
,
Winter
,
I. M.
, and
Darwin
,
C. J.
(
1986
). “
The representation of the steady-state vowel sounds in the temporal discharge patterns of the guinea pig cochlear nerve and primarylike cochlear nucleus neurons
,”
J. Acoust. Soc. Am.
79
,
100
113
.
36.
Plack
,
C. J.
, and
Oxenham
,
A. J.
(
2000
). “
Basilar-membrane nonlinearity estimated by pulsation threshold
,”
J. Acoust. Soc. Am.
107
,
501
507
.
37.
Robles
,
L.
, and
Ruggero
,
M. A.
(
2001
). “
Mechanics of the mammalian cochlea
,”
Physiol. Rev.
81
,
1305
1352
.
38.
Ruggero
,
M. A.
,
Rich
,
N. C.
,
Recio
,
A.
,
Narayan
,
S. S.
, and
Robles
,
L.
(
1997
). “
Basilar-membrane responses to tones at the base of the chinchilla cochlea
,”
J. Acoust. Soc. Am.
101
,
2151
2163
.
39.
Sachs
,
M. B.
,
Bruce
,
I. C.
,
Miller
,
R. L.
, and
Young
,
E. D.
(
2002
). “
Biological basis of hearing-aid design
,”
Ann. Biomed. Eng.
30
,
157
168
.
40.
Schilling
,
J. R.
,
Miller
,
R. L.
,
Sachs
,
M. B.
, and
Young
,
E. D.
(
1998
). “
Frequency-shaped amplification changes the neural representation of speech with noise-induced hearing loss
,”
Hear. Res.
117
,
57
70
.
41.
Sinex
,
D.
, and
Geisler
,
C.
(
1983
). “
Responses of auditory-nerve fibers to consonant-vowel syllables
,”
J. Acoust. Soc. Am.
73
,
602
615
.
42.
Stelmachowicz
,
P. G.
,
Jesteadt
,
W.
,
Gorga
,
M. P.
, and
Mott
,
J.
(
1985
). “
Speech perception ability and psychophysical tuning curves in hearing-impaired listeners
,”
J. Acoust. Soc. Am.
77
,
620
627
.
43.
Sumner
,
C. J.
,
O’Mard
,
L. P.
,
Lopez-Poveda
,
E. A.
, and
Meddis
,
R.
(
2003
). “
A non-linear filter-bank model of the guinea-pig cochlear nerve: Rate responses
,”
J. Acoust. Soc. Am.
113
,
3264
3274
.
44.
Tan
,
Q.
, and
Carney
,
L. H.
(
2003
). “
A phenomenological model for the responses of the auditory-nerve fibers. II. Nonlinear tuning with a frequency glide
,”
J. Acoust. Soc. Am.
114
,
2007
2020
.
45.
Tchorz
,
J.
, and
Kollmeier
,
B.
(
1999
). “
A model of auditory perception as a front end for automatic speech recognition
,”
J. Acoust. Soc. Am.
106
,
2040
2050
.
46.
Wiener
,
F. M.
, and
Ross
,
D. A.
(
1946
). “
The pressure distribution in the auditory canal in a progressive sound field
,”
J. Acoust. Soc. Am.
18
,
401
408
.
47.
Wilson
,
B. S.
,
Schatzer
,
R.
,
Lopez-Poveda
,
E. A.
,
Sun
,
X.
,
Lawson
,
D. T.
, and
Wolford
,
R. D.
(
2005
). “
Two new directions in speech processor design for cochlear implants
,”
Ear Hear.
26
,
73S
81S
.
48.
Wong
,
J. C.
,
Miller
,
R. L.
,
Calhoun
,
B. M.
,
Sachs
,
M. B.
, and
Young
,
E. D.
(
1998
). “
Effects of high sound levels on responses to the vowel /ε/ in cat auditory nerve
,”
Hear. Res.
123
,
61
77
.
49.
Young
,
E. D.
, and
Sachs
,
M. B.
(
1979
). “
Representation of steady-state vowels in the temporal aspects of the discharge patterns of populations of auditory nerve fibers
,”
J. Acoust. Soc. Am.
66
,
1381
1403
.
50.
Zhang
,
X.
,
Heinz
,
M. G.
,
Bruce
,
I. C.
, and
Carney
,
L. H.
(
2001
). “
A phenomenological model for the responses of auditory-nerve fibers. I. Nonlinear tuning with compression and suppression
,”
J. Acoust. Soc. Am.
109
,
648
670
.
51.
Zilany
,
M. S. A.
, and
Bruce
,
I. C.
(
2006
). “
Modeling auditory-nerve responses for high sound pressure levels in the normal and impaired auditory periphery
,”
J. Acoust. Soc. Am.
120
,
1446
1466
.
52.
Zilany
,
M. S. A.
, and
Bruce
,
I. C.
(
2007
). “
Predictions of speech intelligibility with a model of the normal and impaired auditory-periphery
,” in
Proceedings of the Third International IEEE EMBS Conference on Neural Engineering
(
IEEE
,
Piscataway, NJ
), pp.
481
485
.
You do not currently have access to this content.