Phase cancellation effects can compromise the integrity of ultrasonic measurements performed with phase sensitive receiving apertures. A lack of spatial coherence of the ultrasonic field incident on a phase sensitive receiving array can produce inaccuracies of the measured attenuation coefficient and phase velocity. The causal (Kramers-Kronig) link between these two quantities in the presence of phase distortion is investigated using two plastic polymer materials, Plexiglas and Lexan, that exhibit attenuation coefficients that increase linearly with frequency, in a fashion analogous to that of soft tissue. Flat and parallel plates were machined to have a step of a thickness corresponding to an integer number of half wavelengths within the bandwidth investigated, 3 to 7MHz. Insonification of the stepped portion of each plate produces phase cancellation artifacts at the receiving aperture and, therefore, in the measured frequency dependent attenuation coefficient. Dispersion predictions using two different forms of the Kramers-Kronig relations were performed for the flat and the stepped regions of each plastic plate. Despite significant phase distortion and a detection system sensitive to these aberrations, the Kramers-Kronig link between the apparent attenuation coefficient and apparent phase velocity dispersion remains intact.

1.
R.
Truell
,
C.
Elbaum
, and
B. B.
Chick
,
Ultrasonic methods in solid state physics
(
Academic Press
, New York,
1969
), pp.
107
108
.
2.
H.
Seki
,
A.
Granato
, and
R.
Truell
, “
Diffraction effects in the ultrasonic field of a piston source and their importance in the accurate measurement of attenuation
,”
J. Acoust. Soc. Am.
28
,
230
238
(
1956
).
3.
R.
Truell
and
W.
Oates
, “
Effect of lack of parallelism of sample faces on the measurement of ultrasonic attenuation
,”
J. Acoust. Soc. Am.
35
,
1382
1386
(
1963
).
4.
L. J.
Busse
,
J. G.
Miller
,
D. E.
Yuhas
,
J. W.
Mimbs
,
A. N.
Weiss
, and
B. E.
Sobel
, “
Phase cancellation effects: A source of attenuation artifact eliminated by a CdS acoustoelectric receiver
,”
Ultrasound Med. Biol.
3
,
1519
l535
(
1977
).
5.
L. J.
Busse
and
J. G.
Miller
, “
Detection of spatially nonuniform ultrasonic radiation with phase sensitive (piezoelectric) and phase insensitive (acoustoelectric) receivers
,”
J. Acoust. Soc. Am.
70
,
1377
1386
(
1981
).
6.
L. J.
Busse
and
J. G.
Miller
, “
A comparison of finite aperture phase sensitive and phase insensitive detection in the near field of inhomogeneous material
,”
Proceedings of IEEE Ultrasonics Symposium 81CH1689-9
,
pp.
617
626
(
1981
).
7.
P. H.
Johnston
and
J. G.
Miller
, “
Phase-insensitive detection for measurement of backscattered ultrasound
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
33
,
713
721
(
1986
).
8.
P. W.
Marcus
and
E. L.
Carstensen
, “
Problems with absorption measurements of inhomogeneous solids
,”
J. Acoust. Soc. Am.
58
,
1334
1335
(
1975
).
9.
O. T.
von Ramm
,
F. L.
Thurstone
, and
J.
Kisslo
, “
Cardiovascular diagnosis with real time ultrasound imaging
,” in
Acoustical Holography
, edited by
N.
Booth
(
Plenum Press
, New York,
1975
), Vol. 6, pp.
91
102
.
10.
F. L.
Thurstone
and
O. T.
von Ramm
, “
A new ultrasound technique employing two-dimensional, electronic beam steering
,” in
Acoustic Holography
, edited by
P. S.
Green
(
Plenum Press
, New York,
1974
), Vol. 5, pp.
249
259
.
11.
M.
O’Donnell
,
E. T.
Jaynes
, and
J. G.
Miller
, “
General relationships between ultrasonic attenuation and dispersion
,”
J. Acoust. Soc. Am.
63
,
1935
1937
(
1978
).
12.
M.
O’Donnell
,
E. T.
Jaynes
, and
J. G.
Miller
, “
Kramers-Kronig relationship between ultrasonic attenuation and phase velocity
,”
J. Acoust. Soc. Am.
69
,
696
701
(
1981
).
13.
J.
Mobley
,
K. R.
Waters
,
M. S.
Hughes
,
C. S.
Hall
,
J. N.
Marsh
,
G. H.
Brandenburger
, and
J. G.
Miller
, “
Kramers-Kronig relations applied to finite bandwidth data from suspensions of encapsulated microbubbles
,”
J. Acoust. Soc. Am.
108
,
2091
2106
(
2000
).
14.
J.
Mobley
,
K. R.
Waters
,
M. S.
Hughes
,
C. S.
Hall
,
J. N.
Marsh
,
G. H.
Brandenburger
, and
J. G.
Miller
, Erratum: “
Kramers-Kronig relations applied to finite bandwidth data from suspensions of encapsulated microbubbles
,”
J. Acoust. Soc. Am.
112
,
760
761
(
2002
).
15.
K. R.
Waters
,
M. S.
Hughes
,
G. H.
Brandenburger
, and
J. G.
Miller
, “
On a time-domain representation of the Kramers-Kronig dispersion relations
,”
J. Acoust. Soc. Am.
108
,
2114
2119
(
2000
).
16.
K. R.
Waters
,
M. S.
Hughes
,
J.
Mobley
,
G. H.
Brandenburger
, and
J. G.
Miller
, “
On the applicability of Kramers-Kronig relations for ultrasonic attenuation obeying a frequency power law
,”
J. Acoust. Soc. Am.
108
,
556
563
(
2000
).
17.
R. L.
Trousil
,
K. R.
Waters
, and
J. G.
Miller
, “
Experimental validation of the use of Kramers-Kronig relations to eliminate the phase sheet ambiguity in broadband phase spectroscopy
,”
J. Acoust. Soc. Am.
109
,
2236
2244
(
2001
).
18.
J.
Mobley
,
K. R.
Waters
, and
J. G.
Miller
, “
Finite bandwidth effects on the casual prediction of ultrasonic attenuation of the power-law form
,”
J. Acoust. Soc. Am.
114
,
2782
2790
(
2003
).
19.
K. R.
Waters
,
M. S.
Hughes
,
J.
Mobley
, and
J. G.
Miller
, “
Differential forms of the Kramers-Kronig dispersion relations
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
50
,
68
76
(
2003
).
20.
J.
Mobley
,
K. R.
Waters
, and
J. G.
Miller
, “
Causal determination of acoustic group velocity and frequency derivative of attenuation with finite-bandwidth Kramers-Kronig relations
,”
Phys. Rev. E
72
,
016604
1
(
2005
).
21.
K. R.
Waters
,
J.
Mobley
, and
J. G.
Miller
, “
Causality-imposed (Kramers-Kronig) relationships between attenuation and dispersion
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
52
,
822
833
(
2005
).
22.
N.
Akashi
,
J.
Kushibiki
, and
F.
Dunn
, “
Acoustic properties of egg yolk and albumen in the frequency range 20400MHz
,”
J. Acoust. Soc. Am.
102
,
3774
3778
(
1997
).
23.
R. M.
Arthur
and
K. V.
Gurumurthy
, “
A single-pole model for the propagation on ultrasound in soft tissue
,”
J. Acoust. Soc. Am.
77
,
1589
1597
(
1985
).
24.
P. P.
Antich
,
J. A.
Anderson
,
R. B.
Ashman
,
J. E.
Dowdey
,
J.
Gonzales
,
R. C.
Murry
,
J. E.
Zerwekh
, and
C. Y. C.
Pak
, “
Measurement of mechanical-properties of bone material invitro by ultrasound reflection—methodology and comparison with ultrasound transmission
,”
J. Bone Miner. Res.
6
,
417
426
(
1991
).
25.
J. F.
Aubry
,
M.
Tanter
,
J.
Gerber
,
J. L.
Thomas
, and
M.
Fink
, “
Optimal focusing by spatio-temporal inverse filter. II. Experiments. Application to focusing through absorbing and reverberating media
,”
J. Acoust. Soc. Am.
110
,
48
58
(
2001
).
26.
V.
Behar
, “
Techniques for phase correction in coherent ultrasound imaging systems
,”
Ultrasonics
39
603
610
(
2002
).
27.
D. H.
Huang
and
J.
Tsao
, “
Analysis and correction of ultrasonic wavefront distortion based on a multilayer phase-screen model
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
49
,
1686
1703
(
2002
).
28.
J. C.
Lacefield
,
W. C.
Pilkington
, and
R. C.
Waag
, “
Comparisons of lesion detectability in ultrasound images acquired using time-shift compensation and spatial compounding
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
51
,
1649
1659
(
2004
).
29.
J. C.
Lacefield
and
R. C.
Waag
, “
Time-shift estimation and focusing through distributed aberration using multirow arrays
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
48
,
1606
1624
(
2001
).
30.
Y.
Li
, “
The influences of ambiguity phase aberration profiles on focusing quality in the very near field—Part II: Dynamic range focusing on reception
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
49
,
72
84
(
2002
).
31.
S. E.
Masoy
,
T. F.
Johansen
, and
B.
Angelsen
, “
Correction of ultrasonic wave aberration with a time delay and amplitude filter
,”
J. Acoust. Soc. Am.
113
,
2009
2020
(
2003
).
32.
A. I.
Nachman
,
I.
James
,
F.
Smith
, and
R. C.
Waag
, “
An equation for acoustic propagation in inhomogeneous media with relaxation losses
,”
J. Acoust. Soc. Am.
88
,
1584
1595
(
1990
).
33.
N. M.
Ivancevich
,
J. J.
Dahl
,
G. E.
Trahey
, and
S. W.
Smith
, “
Phase-aberration correction with a 3-D ultrasound scanner: Feasibility study
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
53
,
1432
1439
(
2006
).
34.
K. D.
Wallace
,
M. R.
Holland
,
B. S.
Robinson
,
R. J.
Fedewa
,
C. W.
Lloyd
, and
J. G.
Miller
, “
Impact of propagation through an aberrating medium on the linear effective apodization of a nonlinearly generated second harmonic field
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
53
,
1260
1268
(
2006
).
35.
T. L.
Szabo
and
J. R.
Wu
, “
A model for longitudinal and shear wave propagation in viscoelastic media
,”
J. Acoust. Soc. Am.
107
,
2437
2446
(
2000
).
36.
L. E.
Kinsler
,
A. R.
Frey
,
A. B.
Coppens
, and
J. V.
Sanders
,
Fundamentals of Acoustics
, 4th ed. (
Wiley
, New York,
2000
), pp.
179
184
.
37.
J.
Mobley
,
C. S.
Hall
,
J. N.
Marsh
,
M. S.
Hughes
,
K. R.
Waters
,
G. H.
Brandenburger
, and
J. G.
Miller
, “
Measurements and predictions of the phase velocity and attenuation coefficient in suspensions of elastic microspheres
,”
J. Acoust. Soc. Am.
106
,
652
659
(
1999
).
38.
W.
Sachse
and
Y. H.
Pao
, “
On the determination of phase and group velocities of dispersive waves in solids
,”
J. Appl. Phys.
49
,
4320
4327
(
1978
).
39.
J. E.
Perrin
,
G.
Berger
,
A.
Salesses
, and
M.
Agneray
, “
Methods of tissue characterization with ultrasonic spectroscopy, analysis of the results obtained, prospects for clinical application in a short time
,”
C. R. Seances Soc. Biol. Fil.
173
,
345
58
(
1979
).
40.
H.
Hachiya
,
S.
Ohtsuki
,
M.
Tanaka
, and
F.
Dunn
, “
Determination of sound speed in biological tissues based on frequency analysis of pulse response
,”
J. Acoust. Soc. Am.
92
,
1564
1568
(
1992
).
41.
J.
Blitz
,
Fundamentals of Ultrasonics
, 1st ed. (
Butterworth & Co. LTD.
, London,
1963
),
24
28
.
42.
K. A.
Wear
,
T. A.
Stiles
,
G. R.
Frank
,
E. L.
Madsen
,
F.
Cheng
,
E. J.
Feleppa
,
C. S.
Hall
,
B. S.
Kim
,
P.
Lee
,
W. D.
O’Brien
, Jr.
,
M. L.
Oelze
,
B. I.
Raju
,
K. K.
Shung
,
T. A.
Wilson
, and
J. R.
Yuan
, “
Interlaboratory comparison of ultrasonic backscatter coefficient measurements from 2 to 9MHz
,”
J. Ultrasound Med.
24
,
1235
1250
.
43.
S. L.
Baldwin
,
K. R.
Marutyan
,
M.
Yang
,
K. D.
Wallace
,
M. R.
Holland
, and
J. G.
Miller
, “
Measurements of the anisotropy of ultrasonic attenuation in freshly excised myocardium
,”
J. Acoust. Soc. Am.
119
,
3130
3139
(
2006
).
44.
J. J.
Markham
, “
Absorption of sounds in fluids
,”
Rev. Mod. Phys.
23
,
353
411
(
1953
).
You do not currently have access to this content.