A new multiaspect target detection method is presented based on the infinite hidden Markov model (iHMM). The scattering of waves from a target is modeled as an iHMM with the number of underlying states treated as infinite, from which a full posterior distribution on the number of states associated with the targets is inferred and the target-dependent states are learned collectively. A set of Dirichlet processes (DPs) are used to define the rows of the HMM transition matrix and these DPs are linked and shared via a hierarchical Dirichlet process. Learning and inference for the iHMM are based on a Gibbs sampler. The basic framework is applied to a detailed analysis of measured acoustic scattering data.

1.
P.
Runkle
,
P. K.
Bharadwaj
,
L.
Couchman
, and
L.
Carin
, “
Hidden Markov models for multi-aspect target classification
,”
IEEE Trans. Signal Process.
47
,
2035
2040
(
1990
).
2.
P.
Runkle
,
L.
Carin
,
L.
Couchman
,
T. J.
Yoder
, and
J. A.
Bucaro
, “
Multi-aspect identification of submerged elastic targets via wave-based matching pursuits and hidden Markov models
,”
J. Acoust. Soc. Am.
104
,
937
946
(
1999
).
3.
M.
McClure
and
L.
Carin
, “
Matching pursuits with a wave-based dictionary
,”
IEEE Trans. Signal Process.
45
,
2912
2927
(
1997
).
4.
P. K.
Bharadwaj
,
P.
Runkle
, and
L.
Carin
, “
Target identification with wave-based matching pursuits and hidden Markov models
,”
IEEE Trans. Antennas Propag.
47
,
1543
1554
(
1999
).
5.
R.
Varriere
and
R. L.
Moses
, “
High-resolution radar target modeling using a modified prony estimator
,”
IEEE Trans. Antennas Propag.
40
,
13
19
(
1992
).
6.
L. C.
Potter
,
D. M.
Chiang
,
R.
Carriere
, and
M. J.
Gerry
, “
A gtd-based parametric model for radar scattering
,”
IEEE Trans. Antennas Propag.
43
,
1058
1067
(
1995
).
7.
M.
McClure
,
R. C.
Qiu
, and
L.
Carin
, “
On the superresolution identification of observables from swept-frequency scattering data
,”
IEEE Trans. Antennas Propag.
45
,
631
641
(
1997
).
8.
C. E.
Baum
,
The Singularity Expansion Method
(
Springer
,
New York
,
1976
).
9.
D.
Kralj
,
L.
Mei
,
T. T.
Hsu
, and
L.
Carin
, “
Short-pulse propagation in a hollow waveguids: Analysis, optoelectronic measurement and signal processing
,”
IEEE Trans. Microwave Theory Tech.
43
,
2144
2150
(
1995
).
10.
T. S.
Ferguson
, “
A Bayesian analysis of some nonparametric problems
,”
Ann. Stat.
1
,
209
230
(
1973
).
11.
M. D.
Escobar
and
M.
West
, “
Bayesian density estimation and inference using mixtures
,”
J. Am. Stat. Assoc.
90
,
577
588
(
1995
).
12.
S. N.
MacEachern
and
P.
Müller
, “
Estimating mixture of dirichlet process models
,”
J. Comput. Graph. Stat.
7
,
223
238
(
1998
).
13.
Y. W.
Teh
,
M. I.
Jordan
,
M. J.
Beal
, and
D. M.
Blei
, “
Hierarchical Dirichlet processes
,”
J. Am. Stat. Assoc.
101
,
1566
1581
.
14.
Y. W.
Teh
,
M. I.
Jordan
,
M. J.
Beal
, and
D. M.
Blei
, “
Hierarchical Dirichlet processes
,” Technical Rep. No. 653,
U.C. Berkeley Statistics
,
2004
.
15.
P.
Runkle
,
L.
Carin
,
L.
Couchman
,
T.
Yoder
, and
J.
Bucaro
, “
Multi-aspect target identification with wave-based matched pursuits and continuous hidden Markov models
,”
IEEE Trans. Pattern Anal. Mach. Intell.
21
,
1371
1378
(
1999
).
16.
J.
Sethuraman
, “
A constructive definition of Dirichlet priors
,”
Stat. Sin.
4
,
639
650
(
1994
).
17.
D.
Blackwell
and
J. B.
MacQueen
, “
Ferguson distributions via polya urn schemes
,”
Ann. Stat.
1
,
353
355
(
1973
).
18.
C. E.
Rasmussen
, “
The infinite Gaussian mixture model
,”
Adv. Neural Inf. Process. Syst.
12
, (
2000
).
19.
L. R.
Rabiner
, “
A tutorial on hidden Markov models and selected applications in speech recognition
,”
Proc. IEEE
77
,
275
285
(
1989
).
20.
N.
Dasgupta
,
P.
Runkle
,
L.
Carin
,
L.
Couchman
,
T.
Yoder
,
J.
Buraco
, and
G.
Dobeck
, “
Class-based target identification with multi-aspect scattering data
,”
IEEE J. Ocean. Eng.
28
,
271
282
(
2003
).
21.
A.
Stolcke
and
S.
Omohundro
, “
Hidden Markov model induction by Bayesian model merging
,”
Adv. Neural Inf. Process. Syst.
5
(
1993
).
22.
M. J.
Beal
,
Z.
Ghahramani
, and
C.
Rasmussen
, “
The infinite hidden markov model
,”
Adv. Neural Inf. Process. Syst.
14
(
2002
).
23.
J.
Pitman
, “
Random discrete distributions invariant under size-biased permutation
,”
Adv. Appl. Probab.
28
,
525
539
(
1996
).
24.
C.
Antoniak
, “
Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems
,”
Ann. Stat.
2
,
1152
1174
(
1974
).
25.
R. M.
Gray
, “
Vector quantization
,”
IEEE ASSP Mag.
1
,
4
29
(
1984
).
You do not currently have access to this content.