The frequency-dependent phase velocity and attenuation coefficient for the fast longitudinal wave in a water-saturated sandy sediment were measured over the frequency range from 0.3to1.0MHz. The experimental data of phase velocity exhibited the significant negative dispersion, with the mean rate of decline of 120±20msMHz. The Biot model predicted the approximately nondispersive phase velocity and the grain-shearing (GS) model exhibited the slightly positive dispersion. In contrast, the predictions of the multiple scattering models for the negative dispersion in the glass-grain composite were in general agreement with the experimental data for the water-saturated sandy sediment measured here. The experimental data of attenuation coefficient was found to increase nonlinearly with frequency from 0.3to1.0MHz. However, both the Biot and the GS models yielded the attenuation coefficient increasing almost linearly with frequency. The total attenuation coefficient given by the algebraic sum of absorption and scattering components showed a reasonable agreement with the experimental data for overall frequencies. This study suggests that the scattering is the principal mechanism responsible for the variations of phase velocity and attenuation coefficient with frequency in water-saturated sandy sediments at high frequencies.

1.
Biot
,
M. A.
(
1956a
). “
Theory of propagation of elastic waves in a fluid-saturated solid. I. Low-frequency range
,”
J. Acoust. Soc. Am.
115
,
168
178
.
2.
Biot
,
M. A.
(
1956b
). “
Theory of propagation of elastic waves in a fluid-saturated solid. II. Higher frequency range
,”
J. Acoust. Soc. Am.
28
,
179
191
.
3.
Biot
,
M. A.
(
1962
). “
Generalized theory of acoustic propagation in porous dissipative media
,”
J. Acoust. Soc. Am.
34
,
1254
1264
.
4.
Buckingham
,
M. J.
(
1997
). “
Theory of acoustic attenuation, dispersion, and pulse propagation in unconsolidated granular materials including marine sediments
,”
J. Acoust. Soc. Am.
102
,
2579
2596
.
5.
Buckingham
,
M. J.
(
2000
). “
Wave propagation, stress relaxation, and grain-to-grain shearing in saturated, unconsolidated marine sediments
,”
J. Acoust. Soc. Am.
108
,
2796
2815
.
6.
Buckingham
,
M. J.
(
2005
). “
Compressional and shear wave properties of marine sediments: Comparisons between theory and data
,”
J. Acoust. Soc. Am.
117
,
137
152
.
7.
Chotiros
,
N. P.
(
1995
). “
Biot model of sound propagation in water-saturated sand
,”
J. Acoust. Soc. Am.
97
,
199
214
.
8.
Chotiros
,
N. P.
, and
Isakson
,
M. J.
(
2004
). “
A broadband model of sandy ocean sediments: Biot-Stoll with contact squirt flow and shear drag
,”
J. Acoust. Soc. Am.
116
,
2011
2022
.
9.
Hamilton
,
E. L.
(
1987
). “
Acoustic properties of sediments
,” in
Acoustics and Ocean Bottom
, edited by
A.
Lara-Saenz
,
C.
Ranz-Guerra
, and
C.
Carbo-Fite
(
Consejo Superior de Investigacions Cientificas
,
Madrid, Spain
), pp.
3
58
.
10.
Hampton
,
L. D.
(
1967
). “
Acoustic properties of sediments
,”
J. Acoust. Soc. Am.
42
,
882
890
.
11.
Kaye
,
G. W. C.
, and
Laby
,
T. H.
(
1995
).
Tables of Physical and Chemical Constants and Some Mathematical Functions
(
Longman
,
London
).
12.
Moussatov
,
A.
,
Guillon
,
L.
,
Ayrault
,
C.
, and
Castagnede
,
B.
(
1998
). “
Experimental study of the dispersion of ultrasonic waves in sandy sediments
,”
C. R. Acad. Sci., Ser. IIb Mec. Phys. Astron.
326
,
433
439
.
13.
Nicholson
,
D.
, and
Schwartz
,
L.
(
1982
). “
Structure-induced minimum in the average spectrum of a liquid or amorphous metal
,”
Phys. Rev. Lett.
49
,
1050
1053
.
14.
Nolle
,
A. W.
,
Hoyer
,
W. A.
,
Mifsud
,
J. F.
,
Runyan
,
W. R.
, and
Ward
,
M. B.
(
1963
). “
Acoustical properties of water-filled sands
,”
J. Acoust. Soc. Am.
35
,
1394
1408
.
15.
Ohkawa
,
K.
(
2006
). “
Confirmation of the Biot theory for water-saturated sands at high frequencies and effects of scattering on the attenuation of sound waves (L)
,”
J. Acoust. Soc. Am.
119
,
709
711
.
16.
Schwartz
,
L.
, and
Plona
,
T. J.
(
1984
). “
Ultrasonic propagation in close-packed disordered suspensions
,”
J. Appl. Phys.
55
,
3971
3977
.
17.
Seifert
,
P. K.
,
Kaelin
,
B.
, and
Johnson
,
L. R.
(
1999
). “
Effect on ultrasonic signals of viscous pore fluids in unconsolidated sand
,”
J. Acoust. Soc. Am.
106
,
3089
3094
.
18.
Stoll
,
R. D.
(
2002
). “
Velocity dispersion in water-saturated granular sediment
,”
J. Acoust. Soc. Am.
111
,
785
793
.
19.
Stoll
,
R. D.
, and
Bryan
,
G. M.
(
1970
). “
Wave attenuation in saturated sediments
,”
J. Acoust. Soc. Am.
47
,
1440
1447
.
20.
Tang
,
D.
,
Briggs
,
K. B.
,
Williams
,
K. L.
,
Jackson
,
D. R.
, and
Thorsos
,
E. I.
(
2002
). “
Fine-scale volume heterogeneity measurements in sand
,”
IEEE J. Ocean. Eng.
27
,
546
560
.
21.
Tsang
,
L.
,
Kong
,
J. A.
, and
Habashy
,
T.
(
1982
). “
Multiple scattering of acoustic waves by random distribution of discrete spherical scatterers with the quasicrystalline and Percus-Yevick approximation
,”
J. Acoust. Soc. Am.
71
,
552
558
.
22.
Turgut
,
A.
, and
Yamamoto
,
T.
(
1990
). “
Measurements of acoustic wave velocities and attenuation in marine sediments
,”
J. Acoust. Soc. Am.
87
,
2376
2383
.
23.
Verhoef
,
W. A.
,
Cloostermans
,
M. J. T. M.
, and
Thijssen
,
J. M.
(
1985
). “
Diffraction and dispersion effects on the estimation of ultrasound attenuation and velocity in biological tissues
,”
IEEE Trans. Biomed. Eng.
BME-32
,
521
529
.
24.
Wear
,
K. A.
(
2000
). “
Measurements of phase velocity and group velocity in human calcaneus
,”
Ultrasound Med. Biol.
26
,
641
646
.
25.
Williams
,
K. L.
,
Jackson
,
D. R.
,
Thorsos
,
E. I.
,
Tang
,
D.
, and
Schock
,
S. G.
(
2002
). “
Comparison of sound speed and attenuation measured in a sandy sediment to predictions based on the Biot theory of porous media
,”
IEEE J. Ocean. Eng.
27
,
413
428
.
26.
Wingham
,
D. J.
(
1985
). “
The dispersion of sound in sediment
,”
J. Acoust. Soc. Am.
78
,
1757
1760
.
27.
Xu
,
W.
, and
Kaufman
,
J. J.
(
1993
). “
Diffraction correction methods for insertion ultrasound attenuation estimation
,”
IEEE Trans. Biomed. Eng.
40
,
563
570
.
You do not currently have access to this content.