Xylophone sounds produced by striking wooden bars with a mallet are strongly influenced by the mechanical properties of the wood species chosen by the xylophone maker. In this paper, we address the relationship between the sound quality based on the timbre attribute of impacted wooden bars and the physical parameters characterizing wood species. For this, a methodology is proposed that associates an analysis-synthesis process and a perceptual classification test. Sounds generated by impacting 59 wooden bars of different species but with the same geometry were recorded and classified by a renowned instrument maker. The sounds were further digitally processed and adjusted to the same pitch before being once again classified. The processing is based on a physical model ensuring the main characteristics of the wood are preserved during the sound transformation. Statistical analysis of both classifications showed the influence of the pitch in the xylophone maker judgement and pointed out the importance of two timbre descriptors: the frequency-dependent damping and the spectral bandwidth. These descriptors are linked with physical and anatomical characteristics of wood species, providing new clues in the choice of attractive wood species from a musical point of view.

34.
American National Standards Institute (
1973
).
American National Standard Psychoacoustical Terminology
(American National Standards Institute, NY).
1.
Adrien
,
J. M.
(
1991
).
The Missing Link: Modal Synthesis
(
MIT Press
, Cambridge, MA), Chap. 8, pp.
269
297
.
3.
Avanzini
,
F.
, and
Rocchesso
,
D.
(
2001
). “
Controlling material properties in physical models of sounding objects
,” in
Proceedings of the International Computer Music Conference 2001
, 17–22 September 2001, Hawana, pp.
91
94
.
4.
Beauchamps
,
J. W.
(
1982
). “
Synthesis by spectral amplitude and “brightness” matching of analyzed musical instrument tones
,”
J. Audio Eng. Soc.
30
(
6
),
396
406
.
5.
Blay
,
M.
,
Bourgain
, and
Samson
(
1971
). “
Application des techniques électroacoustiques à la détermination du module d’élasticité par un procédé nondestructif (Application of electroacoustic techniques to determine the elasticity modulus by nondestructive procedure)
,” Technical Review to Advance Techniques in Acoustical,
Electrical and Mechanical Measurement
4
,
3
19
.
6.
Bork
,
I.
(
1995
). “
Practical tuning of xylophone bars and resonators
,”
Appl. Acoust.
46
,
103
127
.
7.
Brancheriau
,
L.
, and
Baillères
,
H.
(
2002
). “
Natural vibration analysis of clear wooden beams: A theoretical review
,”
Wood Sci. Technol.
36
,
347
365
.
8.
Brancheriau
,
L.
,
Baillères
,
H.
,
Détienne
,
P.
,
Gril
,
J.
, and
Kronland-Martinet
,
R.
(
2006a
). “
Key signal and wood anatomy parameters related to the acoustic quality of wood for xylophone-type percussion instruments
,”
J. Wood Sci.
52
(
3
),
270
274
.
9.
Brancheriau
,
L.
,
Baillères
,
H.
,
Détienne
,
P.
,
Kronland-Martinet
,
R.
, and
Metzger
,
B.
(
2006b
). “
Classifying xylophone bar materials by perceptual, signal processing and wood anatomy analysis
,”
Ann. Forest Sci.
62
,
1
9
.
10.
Bucur
,
V.
(
1995
).
Acoustics of Wood
(
CRC Press
, Berlin).
11.
Caclin
,
A.
,
McAdams
,
S.
,
Smith
,
B. K.
, and
Winsberg
,
S.
(
2005
). “
Acoustic correlates of timbre space dimensions: A confirmatory study using synthetic tones
,”
J. Acoust. Soc. Am.
118
(
1
),
471
482
.
12.
Chaigne
,
A.
, and
Doutaut
,
V.
(
1997
). “
Numerical simulations of xylophones. I. Time-domain modeling of the vibrating bars
,”
J. Acoust. Soc. Am.
101
(
1
),
539
557
.
13.
Dillon
,
W. R.
, and
Goldstein
,
M.
(
1984
).
Multivariate Analysis—Methods and Applications
(
Wiley
, New York).
14.
Doutaut
,
V.
,
Matignon
,
D.
, and
Chaigne
,
A.
(
1998
). “
Numerical simulations of xylophones. II. Time-domain modeling of the resonator and of the radiated sound pressure
,”
J. Acoust. Soc. Am.
104
(
3
),
1633
1647
.
15.
Fletcher
,
N. H.
, and
Rossing
,
T. D.
(
1998
).
The Physics of Musical Instruments
, 2nd ed. (
Springer-Verlag
, Berlin).
16.
Giordano
,
B. L.
, and
McAdams
,
S.
(
2006
). “
Material identification of real impact sounds: Effects of size variation in steel, wood, and Plexiglass plates
,”
J. Acoust. Soc. Am.
119
(
2
),
1171
1181
.
17.
Graff
,
K. F.
(
1975
).
Wave Motion in Elastic Solids
(
Ohio State University Press
), pp.
100
108
.
18.
Holz
,
D.
(
1996
). “
Acoustically important properties of xylophon-bar materials: Can tropical woods be replaced by European species
?”
Acust. Acta Acust.
82
(
6
),
878
884
.
19.
Klatzky
,
R. L.
,
Pai
,
D. K.
, and
Krotkov
,
E. P.
(
2000
). “
Perception of material from contact sounds
,”
Presence: Teleoperators and Virtual Environments
9
(
4
),
399
410
.
20.
Lutfi
,
R. A.
, and
Oh
,
E. L.
(
1997
). “
Auditory discrimination of material changes in a struck-clamped bar
,”
J. Acoust. Soc. Am.
102
(
6
),
3647
3656
.
21.
Marozeau
,
J.
,
de Cheveigné
,
A.
,
McAdams
,
S.
, and
Winsberg
,
S.
(
2003
). “
The dependency of timbre on fundamental frequency
,”
J. Acoust. Soc. Am.
114
,
2946
2957
.
22.
Matsunaga
,
M.
, and
Minato
,
K.
(
1998
). “
Physical and mechanical properties required for violin bow materials II. Comparison of the processing properties and durability between pernambuco and substitutable wood species
,”
J. Wood Sci.
44
(
2
),
142
146
.
23.
Matsunaga
,
M.
,
Minato
,
K.
, and
Nakatsubo
,
F.
(
1999
). “
Vibrational property changes of spruce wood by impregnating with water-soluble extractives of pernambuco (Guilandina echinata Spreng.)
,”
J. Wood Sci.
45
(
6
),
470
474
.
24.
Matsunaga
,
M.
,
Sugiyama
,
M.
,
Minato
,
K.
, and
Norimoto
,
M.
(
1996
). “
Physical and mechanical properties required for violin bow materials
,”
Holzforschung
50
(
6
),
511
517
.
25.
McAdams
,
S.
,
Chaigne
,
A.
, and
Roussarie
,
V.
(
2004
). “
The psychomechanics of simulated sound sources: Material properties of impacted bars
,”
J. Acoust. Soc. Am.
115
(
3
),
1306
1320
.
26.
McAdams
,
S.
,
Winsberg
,
S.
,
Donnadieu
,
S.
,
Soete
,
G. D.
, and
Krimphoff
,
J.
(
1995
). “
Perceptual scaling of synthesized musical timbres: Common dimensions, specificities, and latent subject classes
,”
Psychol. Res.
58
,
177
192
.
27.
Obataya
,
E.
,
Umewaza
,
T.
,
Nakatsubo
,
F.
, and
Norimoto
,
M.
(
1999
). “
The effects of water soluble extractives on the acoustic properties of reed (Arundo donax L.)
,”
Holzforschung
53
(
1
),
63
67
.
28.
Ono
,
T.
, and
Norimoto
,
M.
(
1983
). “
Study on Young’s modulus and internal friction of wood in relation to the evaluation of wood for musical instruments
,”
Jpn. J. Appl. Phys., Part 1
22
(
4
),
611
614
.
29.
Ono
,
T.
, and
Norimoto
,
M.
(
1985
). “
Anisotropy of Dynamic Young’s Modulus and Internal Friction in Wood
,”
Jpn. J. Appl. Phys., Part 1
24
(
8
),
960
964
.
30.
Steiglitz
,
K.
, and
McBride
,
L. E.
(
1965
). “
A technique for the identification of linear systems
,”
IEEE Trans. Autom. Control
AC-10
,
461
464
.
31.
Sugiyama
,
M.
,
Matsunaga
,
M.
,
Minato
,
K.
, and
Norimoto
,
M.
(
1994
). “
Physical and mechanical properties of pernambuco (Guilandina echinata Spreng.) used for violin bows
,”
Mokuzai Gakkaishi
40
,
905
910
.
32.
Valette
,
C.
, and
Cuesta
,
C.
(
1993
).
Mécanique de la Corde Vibrante (Mechanics of Vibrating String)
,
Traité des Nouvelles Technologies
, série Mécanique (Hermès, Paris).
33.
Wildes
,
R. P.
, and
Richards
,
W. A.
(
1988
).
Recovering Material Properties from Sound
(
MIT Press
, Cambridge, MA), Chap. 25, pp.
356
363
.
You do not currently have access to this content.