Kramers-Kronig (KK) analyses of experimental data are complicated by the conflict between the inherently bandlimited data and the requirement of KK integrals for a complete infinite spectrum of input information. For data exhibiting localized extrema, KK relations can provide accurate transforms over finite bandwidths due to the local-weighting properties of the KK kernel. Recently, acoustic KK relations have been derived for the determination of the group velocity (cg) and the derivative of the attenuation coefficient (α) (components of the derivative of the acoustic complex wave number). These relations are applicable to bandlimited data exhibiting resonant features without extrapolation or unmeasured parameters. In contrast to twice-subtracted finite-bandwidth KK predictions for phase velocity and attenuation coefficient (components of the undifferentiated wave number), these more recently derived relations for cg and α provide stricter tests of causal consistency because the resulting shapes are invariant with respect to subtraction constants. The integrals in these relations can be formulated so that they only require the phase velocity and attenuation coefficient data without differentiation. Using experimental data from suspensions of encapsulated microbubbles, the finite-bandwidth KK predictions for cg and α are found to provide an accurate mapping of the primary wave number quantities onto their derivatives.

1.
J. S.
Toll
, “
Causality and the dispersion relation: Logical foundations
,”
Phys. Rev.
104
,
1760
1770
(
1956
).
2.
V.
Lucarini
,
F.
Bassani
,
K. E.
Peiponen
, and
J. J.
Saarinen
, “
Dispersion theory and sum rules in linear and nonlinear optics
,”
Riv. Nuovo Cimento
26
,
1
120
(
2003
).
3.
K. F.
Palmer
,
M. Z.
Williams
, and
B. A.
Budde
, “
Multiply subtractive Kramers-Kronig analysis of optical data
,”
Appl. Opt.
37
,
2660
2673
(
1998
).
4.
G. W.
Milton
,
D. J.
Eyre
, and
J. V.
Mantese
, “
Finite frequency range Kramers Kronig relations: Bounds on the dispersion
,”
Phys. Rev. Lett.
79
,
3062
3065
(
1997
).
5.
J.
Mobley
,
K. R.
Waters
,
M. S.
Hughes
,
C. S.
Hall
,
J. N.
Marsh
,
G. H.
Brandenburger
, and
J. G.
Miller
, “
Kramers-Kronig relations applied to finite bandwidth data from suspensions of encapsulated microbubbles
,”
J. Acoust. Soc. Am.
108
,
2091
2106
(
2000
);
[PubMed]
J.
Mobley
,
K. R.
Waters
,
M. S.
Hughes
,
C. S.
Hall
,
J. N.
Marsh
,
G. H.
Brandenburger
, and
J. G.
Miller
,
J. Acoust. Soc. Am.
112
,
760
761
(
2002
).
6.
J.
Mobley
,
K. R.
Waters
, and
J. G.
Miller
, “
Causal determination of acoustic group velocity and frequency derivative of attenuation with finite-bandwidth Kramers-Kronig relations
,”
Phys. Rev. E
72
,
016604
(
2005
).
7.
R. L.
Weaver
and
Y. H.
Pao
, “
Dispersion relations for linear wave propagation in homogeneous and inhomogeneous media
,”
J. Math. Phys.
22
,
1909
1918
(
1981
).
8.
H. M.
Nussenveig
,
Causality and Dispersion Relations
(
Academic
,
New York
,
1972
).
9.
J.
Mobley
,
K. R.
Waters
, and
J. G.
Miller
, “
Finite-bandwidth effects on the causal prediction of ultrasonic attenuation of the power-law form
,”
J. Acoust. Soc. Am.
114
,
2782
2790
(
2003
).
10.
K. R.
Waters
,
M. S.
Hughes
,
J.
Mobley
,
G. H.
Brandenburger
, and
J. G.
Miller
, “
On the applicability of Kramers-Kronig relations for ultrasonic attenuation obeying a frequency power law
,”
J. Acoust. Soc. Am.
108
,
556
563
(
2000
).
11.
K. R.
Waters
,
J.
Mobley
, and
J. G.
Miller
, “
Causality-imposed (Kramers-Kronig) relationships between attenuation and dispersion
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
52
,
822
833
(
2005
).
12.
J. N.
Marsh
,
C. S.
Hall
,
M. S.
Hughes
,
J.
Mobley
,
J. G.
Miller
, and
G. H.
Brandenburger
, “
Broadband through-transmission signal loss measurements of Albunex suspensions at concentrations approaching in vivo doses
,”
J. Acoust. Soc. Am.
101
,
1155
1161
(
1997
).
13.
J.
Mobley
,
J. N.
Marsh
,
C. S.
Hall
,
M. S.
Hughes
,
G. H.
Brandenburger
, and
J. G.
Miller
, “
Broadband measurements of phase velocity in Albunex suspensions
,”
J. Acoust. Soc. Am.
103
,
2145
2153
(
1998
).
14.
N.
DeJong
,
L.
Hoff
,
T.
Skotland
,
N.
Bom
, “
Absorption and scatter of encapsulated gas filled microspheres—Theoretical considerations and some measurements
,”
Ultrasonics
30
,
95
103
(
1992
).
15.
T. L.
Szabo
, “
Causal theories and data for acoustic attenuation obeying a frequency power law
,”
J. Acoust. Soc. Am.
97
,
14
24
(
1995
).
You do not currently have access to this content.