Fast-acting compression has several effects on the envelope of speech signals, especially when a target and a background are mixed together. Three measures of the envelope are described, which can be used to quantify these changes: (1) Within-signal modulation correlation or coherence, the degree of correlation (or coherence) of the envelope (on a dB scale) of a single source across different frequency regions, which is reduced by fast-acting compression; (2) fidelity of envelope shape, the degree to which the envelope shape of the target speech in different frequency channels is preserved following compression; and (3) across-signal modulation correlation or coherence (ASMC), the extent to which the target and background acquire a common component of modulation when they are compressed together, which becomes greater in absolute value (more negative) when the target and background are compressed together. Values of these measures are presented and compared with intelligibility scores obtained using stimuli processed (with a noise-vocoder) so as to preserve mainly envelope cues in a limited number of frequency channels. The results suggest that the dominant factor affecting intelligibility is ASMC.

1.
Boothroyd
,
A.
,
Springer
,
N.
,
Smith
,
L.
, and
Schulman
,
J.
(
1988
). “
Amplitude compression and profound hearing loss
,”
J. Speech Hear. Res.
31
,
362
376
.
2.
Bregman
,
A. S.
,
Abramson
,
J.
,
Doehring
,
P.
, and
Darwin
,
C. J.
(
1985
). “
Spectral integration based on common amplitude modulation
,”
Percept. Psychophys.
37
,
483
493
.
3.
Buss
,
E.
,
Hall
,
J. W.
, III
, and
Grose
,
J. H.
(
2004
). “
Temporal fine-structure cues to speech and pure tone modulation in observers with sensorineural hearing loss
,”
Ear Hear.
25
,
242
250
.
4.
Carrell
,
T.
(
1993
). “
The effect of amplitude comodulation on extracting sentences from noise: Evidence from a variety of contexts
,”
J. Acoust. Soc. Am.
93
,
2327
.
5.
Carrell
,
T. D.
, and
Opie
,
J. M.
(
1992
). “
The effect of amplitude comodulation on auditory object formation in sentence perception
,”
Percept. Psychophys.
52
,
437
445
.
6.
Carter
,
G. C.
,
Knapp
,
C. H.
, and
Nuttall
,
A. H.
(
1973
). “
Estimation of the magnitude-squared coherence function via overlapped fast Fourier transform processing
,”
IEEE Trans. Audio Electroacoust.
21
,
337
344
.
7.
Crouzet
,
O.
, and
Ainsworth
,
W. A.
(
2001
). “
On the various instances of envelope information on the perception of speech in adverse conditions: An analysis of between-channel envelope correlation
,” in
Workshop on Consistent and Reliable Cues for Sound Analysis
(
Aalborg
, Denmark).
8.
Dau
,
T.
,
Kollmeier
,
B.
, and
Kohlrausch
,
A.
(
1997
). “
Modeling auditory processing of amplitude modulation. I. Detection and masking with narrowband carriers
,”
J. Acoust. Soc. Am.
102
,
2892
2905
.
9.
De Gennaro
,
S.
,
Braida
,
L. D.
, and
Durlach
,
N. I.
(
1986
). “
Multichannel syllabic compression for severely impaired listeners
,”
J. Rehabil. Res. Dev.
23
,
17
24
.
10.
Drullman
,
R.
(
1995
). “
Temporal envelope and fine structure cues for speech intelligibility
,”
J. Acoust. Soc. Am.
97
,
585
592
.
13.
Drullman
,
R.
, and
Smoorenburg
,
G. F.
(
1997
). “
Audio-visual perception of compressed speech by profoundly hearing-impaired subjects
,”
Audiology
36
,
165
177
.
11.
Drullman
,
R.
,
Festen
,
J. M.
, and
Plomp
,
R.
(
1994a
). “
Effect of reducing slow temporal modulations on speech reception
,”
J. Acoust. Soc. Am.
95
,
2670
2680
.
12.
Drullman
,
R.
,
Festen
,
J. M.
, and
Plomp
,
R.
(
1994b
). “
Effect of temporal envelope smearing on speech reception
,”
J. Acoust. Soc. Am.
95
,
1053
1064
.
14.
Dudley
,
H.
(
1939
). “
Remaking speech
,”
J. Acoust. Soc. Am.
11
,
169
177
.
15.
Hall
,
J. W.
, III
, and
Grose
,
J. H.
(
1991
). “
Some effects of auditory grouping factors on modulation detection interference (MDI)
,”
J. Acoust. Soc. Am.
90
,
3028
3035
.
16.
Hall
,
J. W.
, III
,
Grose
,
J. H.
, and
Mendoza
,
L.
(
1995
). “
Across-channel processes in masking
,” in
Hearing
, edited by
B. C. J.
Moore
(
Academic
, San Diego).
17.
Healy
,
E. W.
, and
Bacon
,
S. P.
(
2002
). “
Across-frequency comparison of temporal speech information by listeners with normal and impaired hearing
,”
J. Speech Lang. Hear. Res.
45
,
1262
1275
.
18.
Kates
,
J. M.
(
1992
). “
On using coherence to measure distortion in hearing aids
,”
J. Acoust. Soc. Am.
91
,
2236
2244
.
19.
Kates
,
J. M.
(
2000
). “
Cross-correlation procedures for measuring noise and distortion in AGC hearing aids
,”
J. Acoust. Soc. Am.
107
,
3407
3414
.
20.
Kay
,
R. H.
(
1982
). “
Hearing of modulation in sounds
,”
Physiol. Rev.
62
,
894
975
.
21.
Laurence
,
R. F.
,
Moore
,
B. C. J.
, and
Glasberg
,
B. R.
(
1983
). “
A comparison of behind-the-ear high-fidelity linear aids and two-channel compression hearing aids in the laboratory and in everyday life
,”
Br. J. Audiol.
17
,
31
48
.
22.
Moore
,
B. C. J.
(
1992
). “
Across-channel processes in auditory masking
,”
J. Acoust. Soc. Jpn. (E)
13
,
25
37
.
23.
Moore
,
B. C. J.
, and
Carlyon
,
R. P.
(
2005
). “
Perception of pitch by people with cochlear hearing loss and by cochlear implant users
,” in
Pitch Perception
, edited by
C. J.
Plack
,
A. J.
Oxenham
,
R. R.
Fay
, and
A. N.
Popper
(
Springer
, New York).
24.
Moore
,
B. C. J.
, and
Glasberg
,
B. R.
(
1988
). “
A comparison of four methods of implementing automatic gain control (AGC) in hearing aids
,”
Br. J. Audiol.
22
,
93
104
.
28.
Moore
,
B. C. J.
, and
Shailer
,
M. J.
(
1992
). “
Modulation discrimination interference and auditory grouping
,”
Philos. Trans. R. Soc. London, Ser. B
336
,
339
346
.
25.
Moore
,
B. C. J.
,
Glasberg
,
B. R.
, and
Hopkins
,
K.
(
2006
). “
Frequency discrimination of complex tones by hearing-impaired subjects: Evidence for loss of ability to use temporal fine structure information
,”
Hear. Res.
222
,
16
27
.
26.
Moore
,
B. C. J.
,
Glasberg
,
B. R.
, and
Stone
,
M. A.
(
1991
). “
Optimization of a slow-acting automatic gain control system for use in hearing aids
,”
Br. J. Audiol.
25
,
171
182
.
29.
Moore
,
B. C. J.
,
Stone
,
M. A.
, and
Alcántara
,
J. I.
(
2001
). “
Comparison of the electroacoustic characteristics of five hearing aids
,”
Br. J. Audiol.
35
,
307
325
.
27.
Moore
,
B. C. J.
,
Johnson
,
J. S.
,
Clark
,
T. M.
, and
Pluvinage
,
V.
(
1992
). “
Evaluation of a dual-channel full dynamic range compression system for people with sensorineural hearing loss
,”
Ear Hear.
13
,
349
370
.
30.
Plomp
,
R.
(
1983
). “
The role of modulation in hearing
,” in
Hearing - Physiological Bases and Psychophysics
, edited by
R.
Klinke
and
R.
Hartmann
(
Springer
, Berlin).
31.
Plomp
,
R.
(
1988
). “
The negative effect of amplitude compression in multi-channel hearing aids in the light of the modulation-transfer function
,”
J. Acoust. Soc. Am.
83
,
2322
2327
.
32.
Qin
,
M. K.
, and
Oxenham
,
A. J.
(
2003
). “
Effects of simulated cochlear-implant processing on speech reception in fluctuating maskers
,”
J. Acoust. Soc. Am.
114
,
446
454
.
33.
Rabiner
,
L. R.
, and
Schafer
,
R. W.
(
1978
).
Digital Processing of Speech Signals
(
Prentice-Hall
, Englewood Cliffs, NJ).
34.
Rappold
,
R. W.
,
Mendoza
,
L.
, and
Collins
,
M. J.
(
1993
). “
Measuring the strength of auditory fusion for synchronously and non-syncronously fluctuating narrow-band noise pairs
,”
J. Acoust. Soc. Am.
93
,
1196
1199
.
35.
Robinson
,
C. E.
, and
Huntington
,
D. A.
(
1973
). “
The intelligibility of speech processed by delayed long-term averaged compression amplification
,”
J. Acoust. Soc. Am.
54
,
314
.
36.
Shannon
,
R. V.
,
Zeng
,
F.-G.
,
Kamath
,
V.
,
Wygonski
,
J.
, and
Ekelid
,
M.
(
1995
). “
Speech recognition with primarily temporal cues
,”
Science
270
,
303
304
.
37.
Stone
,
M. A.
, and
Moore
,
B. C. J.
(
1992
). “
Syllabic compression: Effective compression ratios for signals modulated at different rates
,”
Br. J. Audiol.
26
,
351
361
.
38.
Stone
,
M. A.
, and
Moore
,
B. C. J.
(
2003
). “
Effect of the speed of a single-channel dynamic range compressor on intelligibility in a competing speech task
,”
J. Acoust. Soc. Am.
114
,
1023
1034
.
39.
Stone
,
M. A.
, and
Moore
,
B. C. J.
(
2004
). “
Side effects of fast-acting dynamic range compression that affect intelligibility in a competing speech task
,”
J. Acoust. Soc. Am.
116
,
2311
2323
.
40.
Stone
,
M. A.
, and
Moore
,
B. C. J.
(
2007
). “
Effects on intelligibility of spectro-temporal modulation changes produced by multi-channel compression
” (submitted to JASA).
41.
Stone
,
M. A.
,
Moore
,
B. C. J.
,
Alcántara
,
J. I.
, and
Glasberg
,
B. R.
(
1999
). “
Comparison of different forms of compression using wearable digital hearing aids
,”
J. Acoust. Soc. Am.
106
,
3603
3619
.
42.
Summerfield
,
Q.
, and
Culling
,
J. F.
(
1992
). “
Auditory segregation of competing voices: Absence of effects of FM or AM coherence
,”
Philos. Trans. R. Soc. London, Ser. B
336
,
357
366
.
43.
Tan
,
C. T.
,
Moore
,
B. C. J.
,
Zacharov
,
N.
, and
Matilla
,
V.-V.
(
2004
). “
Predicting the perceived quality of nonlinearly distorted music and speech signals
,”
J. Audio Eng. Soc.
52
,
699
711
.
44.
Van Tasell
,
D. J.
,
Soli
,
S. D.
,
Kirby
,
V. M.
, and
Widin
,
G. P.
(
1987
). “
Speech waveform envelope cues for consonant recognition
,”
J. Acoust. Soc. Am.
82
,
1152
1161
.
45.
Verschuure
,
J.
,
Maas
,
A. J. J.
,
Stikvoort
,
E.
,
de Jong
,
R. M.
,
Goedegebure
,
A.
, and
Dreschler
,
W. A.
(
1996
). “
Compression and its effect on the speech signal
,”
Ear Hear.
17
,
162
175
.
46.
Villchur
,
E.
(
1973
). “
Signal processing to improve speech intelligibility in perceptive deafness
,”
J. Acoust. Soc. Am.
53
,
1646
1657
.
47.
Yund
,
E. W.
, and
Buckles
,
K. M.
(
1995
). “
Multichannel compression hearing aids: Effect of number of channels on speech discrimination in noise
,”
J. Acoust. Soc. Am.
97
,
1206
1223
.
48.
Zeng
,
F.-G.
(
2004
). “
Compression and cochlear implants
,” in
Compression: From Cochlea to Cochlear Implants
, edited by
S. P.
Bacon
,
A. N.
Popper
, and
R. R.
Fay
(
Springer
, New York).
You do not currently have access to this content.