Phenomena resembling tinnitus and Zwicker phantom tone are seen to result from an auditory gain adaptation mechanism that attempts to make full use of a fixed-capacity channel. In the case of tinnitus, the gain adaptation enhances internal noise of a frequency band otherwise silent due to damage. This generates a percept of a phantom sound as a consequence of hearing loss. In the case of Zwicker tone, a frequency band is temporarily silent during the presentation of a notched broadband sound, resulting in a percept of a tone at the notched frequency. The model suggests a link between tinnitus and the Zwicker tone percept, in that it predicts different results for normal and tinnitus subjects due to a loss of instantaneous nonlinear compression. Listening experiments on 44 subjects show that tinnitus subjects (11 of 44) are significantly more likely to hear the Zwicker tone. This psychoacoustic experiment establishes the first empirical link between the Zwicker tone percept and tinnitus. Together with the modeling results, this supports the hypothesis that the phantom percept is a consequence of a central adaptation mechanism confronted with a degraded sensory apparatus.

1.
O.
Konig
,
R.
Schaette
,
R.
Kempter
, and
M.
Gross
, “
Course of hearing loss and occurrence of tinnitus
,”
Hear. Res.
,
221
,
59
64
(
2006
).
2.
J. C.
Cooper
, Jr.
, “
Health and nutrition examination survey of 1971–75: Part II. tinnitus, subjective hearing loss, and well-being
,”
J. Am. Acad. Audiol
5
,
37
43
(
1994
).
3.
V.
Vesterager
, “
Tinnitus: Investigation and management
,”
Br. Med. J.
314
,
728
731
(
1997
).
4.
G.
Hesse
,
H.
Schaaf
, and
A.
Laubert
, “
Specific findings in distortion product otoacoustic emissions and growth functions with chronic tinnitus
,”
Audiol. Neuro-Otol.
11
,
6
13
(
2005
).
5.
A.
Norena
,
C.
Micheyl
,
S.
Chery-Croze
, and
L.
Collet
, “
Psychoacoustic characterization of the tinnitus spectrum: Implications for the underlying mechanisms of tinnitus
,”
Audiol. Neuro-Otol.
7
,
358
369
(
2002
).
6.
Tinnitus Handbock
, edited by
R. S.
Tyler
(
Thomson
, Delmar Learning,
2000
).
7.
D. M.
Baguley
, “
Mechanisms of tinnitus
,”
Br. Med. Bull.
63
,
195
212
(
2002
).
8.
A. R.
Moller
,
Hearing: Its Physiology and Pathophysiology
(
Academic
, New York,
2000
).
9.
J. J.
Eggermont
, “
Psychological mechanisms and neural models
,” in
Tinnitus Handbook
, edited by
R. S.
Tyler
(
Thomson
, Delmar Learning,
2000
), pp.
85
122
.
10.
J. J.
Eggermont
and
L. E.
Roberts
, “
The neuroscience of tinnitus
,”
Trends Neurosci.
27
,
676
682
(
2004
).
11.
A.
Norena
,
C.
Micheyl
, and
S.
Chery-Croze
, “
An auditory negative after-image as a human model of tinnitus
,”
Hear. Res.
149
,
24
32
(
2000
).
12.
E.
Zwicker
, “
‘Negative afterimage’ in Hearing
,”
J. Acoust. Soc. Am.
36
,
2413
2415
(
1964
).
13.
E.
Zwicker
and
H.
Fastl
,
Psychoacoustics: Facts and Models
(
Springer
, New York,
1999
).
14.
H.
Fastl
, “
On the Zwicker-tone of line spectra with a spectral gap
,”
Acustica
67
,
177
186
(
1989
).
15.
R. C.
Lummis
and
N.
Guttman
, “
Exploratory studies of Zwicker’s ‘negative afterimage’ in Hearing
,”
J. Acoust. Soc. Am.
51
,
1930
1944
(
1972
).
16.
F.
Julicher
,
D.
Andor
, and
T.
Duke
, “
Physical basis of two-tone interference in hearing
,”
Proc. Natl. Acad. Sci. U.S.A.
98
,
9080
9085
(
2001
).
17.
R. V.
Shannon
and
T.
Houtgast
, “
Psychophysical measurements relating suppression and combination tones
,”
J. Acoust. Soc. Am.
68
,
825
829
(
1980
).
18.
R.
Stoop
and
A.
Kern
, “
Two-tone suppression and combination tone generation as computations performed by the hopf cochlea
,”
Phys. Rev. Lett.
93
,
268103
(
2001
).
19.
R. P.
Carlyon
, “
Changes in the masked thresholds of brief tones produced by prior bursts of noise
,”
Hear. Res.
41
,
223
235
(
1989
).
20.
L.
Wiegrebe
,
M.
Koessl
, and
S.
Schmidt
, “
Auditory sensitization during the perception of acoustical negative afterimages: Analogies to visual processing?
,”
Naturwiss.
82
,
387
389
(
1995
).
21.
J. J.
Atick
and
A. N.
Redlich
, “
Quantitative tests of a theory of retinal processing: Contrast sensitivity curves
,” Technical Report NYU-NN-90/2, New York University,
1990
, also Institute for Advanced Studies IASSNS-HEP-90/51.
22.
F.
Rieke
,
D.
Warland
,
R.
de Ruyter van Steveninck
, and
W.
Bialek
,
Spikes: Exploring the Neural Code
(
MIT Press
, Cambridge, MA,
1996
).
23.
H. B.
Barlow
,
R.
Fitzhugh
, and
S. W.
Kuffler
, “
Change of organization in the receptive fields of the cats retina during dark adaptation
,”
J. Physiol. (London)
137
,
338
354
(
1957
).
24.
I.
Ohzawa
,
G.
Sclar
, and
R. D.
Freeman
, “
Contrast gain control in the cat visual cortex
,”
Nature (London)
289
,
266
268
(
1982
).
25.
R. M.
Shapley
and
J. D.
Victor
, “
The contrast gain control of the cat retina
,”
Vision Res.
19
,
431
434
(
1979
).
26.
Y.
Yu
,
B.
Potetz
, and
T. S.
Lee
, “
The role of spiking nonlinearity in contrast gain control and information transmission
,”
Vision Res.
45
,
583
592
(
2005
).
27.
J. J.
Guinan
, Jr.
, “
Physiology of olivocochlear efferents
,” in
The Cochlea
(
Springer
, New York,
1996
), pp.
435
502
.
28.
R. L.
Smith
and
J. J.
Zwislocki
, “
Short-term adaptation and incremental responses of single auditory-nerve fibers
,”
Biol. Cybern.
17
,
169
182
(
1975
).
29.
L. A.
Westerman
and
R. L.
Smith
, “
Rapid and short-term adaptation in auditory nerve responses
,”
Hear. Res.
15
,
249
260
(
1984
).
30.
I.
Dean
,
N. S.
Harper
, and
D.
McAlpine
, “
Neural population coding of sound level adapts to stimulus statistics
,”
Nat. Neurosci.
8
,
1684
1689
(
2005
).
31.
N. J.
Ingham
and
D.
McAlpine
, “
Spike-frequency adaptation in the inferior colliculus
,”
J. Neurophysiol.
91
,
632
645
(
2004
).
32.
Physiology of the Ear
, 2nd ed., edited by
A. F.
Jahn
and
J. R.
Santos-Sacchi
(
Singular
,
2001
).
33.
B. J. C.
Moore
,
An Introduction to the Psychology of Hearing
, 4th ed. (
Academic
, New York,
2003
).
34.
I.
Nelken
,
Y.
Rotman
, and
O.
Bar Yosef
, “
Responses of auditory-cortex neurons to structural features of natural sounds
,”
Nature (London)
397
,
154
157
(
1999
).
35.
R. V.
Shannon
,
F. G.
Zeng
,
V.
Kamath
,
J.
Wygonski
, and
M.
Ekelid
, “
Speech recognition with primarily temporal cues
,”
Science
270
,
303
304
(
1995
).
36.
L. C.
Parra
,
C. D.
Spence
, and
P.
Sajda
, “
Higher-order statistical properties arising from the non-stationarity of natural signals
,”
Advances in Neural Information Processing Systems
13
,
786
792
(
2001
).
37.
J. R.
Cavanaugh
,
W.
Bair
, and
J. A.
Movshon
, “
Selectivity and spatial distribution of signals from the receptive field surround in macaque V1 neurons
,”
J. Neurophysiol.
88
,
2547
2556
(
2002
).
38.
J.
Malo
,
I.
Epifanio
,
R.
Navarro
, and
E. P.
Simoncelli
, “
Non-linear image representation for efficient perceptual coding
,”
IEEE Trans. Image Process.
15
,
68
80
(
2006
).
39.
R.
Valerio
and
R.
Navarro
, “
Optimal coding through divisive normalization models of V1 neurons
,”
Network
14
,
579
593
(
2003
).
40.
R.
Buccigrossi
and
E. P.
Simoncelli
, “
Image compression via joint statistical characterization in the wavelet domain
,”
IEEE Trans. Image Process.
8
,
1688
1701
(
1999
).
41.
C. E.
Shannon
, “
A mathematical theory of communication
,”
Bell Syst. Tech. J.
27
,
379
423
;
C. E.
Shannon
, “
A mathematical theory of communication
,”
Bell Syst. Tech. J.
27
,
623
656
(
1948
).
42.

Frequency decomposition generates approximately zero-mean normal-distributed data, in which case the optimal transfer function has the shape of a Gaussian CDF centered at zero, and optimal transmission is achieved by adjusting the variance of the input to the slope of the CDF. Alternatively, log-power may be communicated, which is also well approximated by a normal distribution. In this case, overall the signal gain adjusts the mean of the Gaussian so that the mean power matches the center of the CDF. In either case, adjusting the data to have unit variance is the first-order correction to maximize transmitted information.

43.

This can be viewed as a trivial Kalman filter; of course, a more sophisticated estimator could be used instead.

44.
M.
LeMasurier
and
P. G.
Gillespie
, “
Hair-cell mechanotransduction and cochlear amplification
,”
Neuron
48
,
403
415
(
2005
).
45.
A. J.
Hudspeth
,
Y.
Choe
,
A. D.
Mehta
, and
P.
Martin
, “
Putting ion channels to work: Mechanoelectrical transduction, adaptation, and amplification by hair cells
,”
PNAS
97
,
11765
11772
(
2000
).
46.
V. M.
Eguiluz
,
M.
Ospeck
,
Y.
Choe
,
A. J.
Hudspeth
, and
M. O.
Magnasco
, “
Essential nonlinearities in hearing
,”
Phys. Rev. Lett.
84
,
5232
5235
(
2000
).
47.
E. J.
Williams
and
S. P.
Bacon
, “
Compression estimates using behavioral and otoacoustic emission measures
,”
Hear. Res.
201
,
44
54
(
2005
).
48.
T.
Janssen
,
P.
Kummer
, and
W.
Arnold
, “
Growth behavior of the 2 f1-f2 distortion product otoacoustic emission in tinnitus
,”
J. Acoust. Soc. Am.
103
,
3418
3430
(
1998
).
49.
R. V.
Harrison
, “
Rate-versus-intensity functions and related AP responses in normal and pathological guinea pig and human cochleas
,”
J. Acoust. Soc. Am.
70
,
1036
1044
(
1981
).
50.
R. S.
Tyler
and
D.
Conrad-Armes
, “
Masking of tinnitus compared to masking of pure tones
,”
J. Speech Hear. Res.
27
,
106
111
(
1984
).
51.
J. M.
Franosch
,
R.
Kempter
,
H.
Fastl
, and
J. L.
van Hemmen
, “
Zwicker tone illusion and noise reduction in the auditory system
,”
Phys. Rev. Lett.
90
,
178103
(
2003
).
52.
G. M.
Gerken
, “
Central tinnitus and lateral inhibition: An auditory brainstem model
,”
Hear. Res.
97
,
75
83
(
1996
).
53.
W. S.
Rhode
and
S.
Greenberg
, “
Lateral suppression and inhibition in the cochlear nucleus of the cat
,”
J. Neurophysiol.
71
,
493
514
(
1994
).
54.
U. W.
Biebel
and
G.
Langner
, “
Evidence for interactions across frequency channels in the inferior colliculus of awake chinchilla
,”
Hear. Res.
169
,
151
168
(
2002
).
55.
M. L.
Sutter
,
C. E.
Schreiner
,
M.
McLean
,
K. N.
O’Connor
, and
W. C.
Loftus
, “
Organization of inhibitory frequency receptive fields in cat primary auditory cortex
,”
J. Neurophysiol.
82
,
2358
2371
(
1999
).
56.
R. D.
Patterson
and
B. C. J.
Moore
, “
Auditory filters and excitation patterns as representations of frequency resolution
,” in
Frequency Selectivity in Hearing
, edited by
B. C. J.
Moore
(
Academic
, New York,
1986
), Chap. 3, pp.
123
177
.
57.
M.
Slaney
, “
An efficient implementation of the Patterson–Holdsworth cochlear filter bank
,” Technical Report 45, Apple, Cupertino, CA,
1993
. Auditory Toolbox version 2.0.
58.

This subjective criterion was used because currently there is no objective test available for tinnitus.

59.
Y.
Weiss
,
E. P.
Simoncelli
, and
E. H.
Adelson
, “
Motion illusions as optimal percepts
,”
Nat. Neurosci.
5
,
598
604
(
2002
).
60.
M. G.
Heinz
and
E. D.
Young
, “
Response growth with sound level in auditory-nerve fibers after noise-induced hearing loss
,”
J. Neurophysiol.
91
,
784
795
(
2004
).
61.
M. J.
Penner
, “
Magnitude estimation and the ‘paradoxical’ loudness of tinnitus
,”
J. Speech Hear. Res.
29
,
407
412
(
1986
).
62.
H.
Gouveris
,
J.
Maurer
, and
W.
Mann
, “
DPOAE-grams in patients with acute tonal tinnitus
,”
Otolaryngol.-Head Neck Surg.
132
,
550
553
(
2005
).
63.
E. T.
Onishi
,
Y.
Fukuda
, and
F. A.
Suzuki
, “
Distortion product otoacoustic emissions in tinnitus patients
,”
Int Tinnitus J
10
,
13
16
(
2004
).
64.
Y.
Shiomi
,
J.
Tsuji
,
Y.
Naito
,
N.
Fujiki
, and
N.
Yamamoto
, “
Characteristics of DPOAE audiogram in tinnitus patients
,”
Hear. Res.
108
,
83
88
(
1997
).
65.
C. R.
Mitchell
and
T. A.
Creedon
, “
Psychophysical tuning curves in subjects with tinnitus suggest outer hair cell lesions
,”
Otolaryngol.-Head Neck Surg.
113
,
223
233
(
1995
).
66.
M. J.
Penner
, “
Two-tone forward masking patterns and tinnitus
,”
J. Speech Hear. Res.
23
,
779
786
(
1980
).
67.
A. M.
Terry
,
D. M.
Jones
,
B. R.
Davis
, and
R.
Slater
, “
Parametric studies of tinnitus masking and residual inhibition
,”
Br. J. Audiol.
17
,
245
256
(
1983
).
68.
J.
Vernon
, “
Attempts to relieve tinnitus
,”
J. Am. Aud Soc.
2
,
124
131
(
1977
).
69.
J.
Vernon
and
M. B.
Meikle
, “
Tinnitus masking
,” in
Tinnitus Handbook
, edited by
R. S.
Tyler
(
Thomson
, Delmar Learning,
2000
), pp.
313
355
.
70.
B. A.
Goldstein
,
A.
Shulman
,
M. L.
Lenhardt
,
D. G.
Richards
,
A. G.
Madsen
, and
R.
Guinta
, “
Long-term inhibition of tinnitus by UltraQuiet therapy: Preliminary report
,”
Int Tinnitus J
7
,
122
127
(
2001
).
71.
A. J.
Norena
and
J. J.
Eggermont
, “
Enriched acoustic environment after noise trauma reduces hearing loss and prevents cortical map reorganization
,”
J. Neurosci.
25
,
699
705
(
2005
).
72.
C.
Formby
,
L. P.
Sherlock
, and
S. L.
Gold
, “
Adaptive plasticity of loudness induced by chronic attenuation and enhancement of the acoustic background
,”
J. Acoust. Soc. Am.
114
,
55
58
(
2003
).
73.
J. J.
Guinan
, Jr.
and
M. L.
Gifford
, “
Effects of electrical stimulation of efferent olivocochlear neurons on cat auditory-nerve fibers I: Rate-level functions
,”
Hear. Res.
33
,
97
113
(
1988
).
74.
N.
Quaranta
,
S.
Wagstaff
, and
D. M.
Baguley
, “
Tinnitus and cochlear implantation
,”
Int J Audiol.
43
,
245
251
(
2004
).
75.
J. A.
Groff
and
M. C.
Liberman
, “
Modulation of cochlear afferent response by the lateral olivocochlear system: Activation via electrical stimulation of the inferior colliculus
,”
J. Neurophysiol.
90
,
3178
3200
(
2003
).
76.
W. H.
Mulders
and
D.
Robertson
, “
Diverse responses of single auditory afferent fibres to electrical stimulation of the inferior colliculus in guinea-pig
,”
Exp. Brain Res.
160
,
235
244
(
2005
).
77.
E. S.
Hoke
,
B.
Ross
, and
M.
Hoke
, “
Auditory afterimage: Tonotopic representation in the auditory cortex
,”
NeuroReport
9
,
3065
3068
(
1998
).
78.
A. J.
Norena
and
J. J.
Eggermont
, “
Neural correlates of an auditory afterimage in primary auditory cortex
,”
J. Assoc. Res. Otolaryngol.
4
,
312
328
(
2003
).
79.
N. J.
Ingham
and
D.
McAlpine
, “
GABAergic inhibition controls neural gain in inferior colliculus neurons sensitive to interaural time differences
,”
J. Neurosci.
25
,
6187
6198
(
2005
).
80.
E. M.
Relkin
and
J. R.
Doucet
, “
Is loudness simply proportional to the auditory nerve spike count?
,”
J. Acoust. Soc. Am.
101
,
2735
2740
(
1997
).
81.
H. S.
Colburn
,
L. H.
Carney
, and
M. G.
Heinz
Quantifying the information in auditory-nerve responses for level discrimination
,”
J. Assoc. Res. Otolaryngol.
4
,
294
311
(
2003
).
82.
M. A.
Reid
,
J.
Flores-Otero
, and
R. L.
Davis
, “
Firing patterns of type II spiral ganglion neurons in vitro
,”
J. Neurosci.
24
,
733
742
(
2004
).
83.

Their sparseness, convergent connectivity, slower responses, reduced accommodation, and association with the cochlear amplifiers make the outer hair cell afferent fibers ideal candidates to encode loudness.

84.
A.
Kral
and
V.
Majernik
, “
On lateral inhibition in the auditory system
,”
Gen. Physiol. Biophys.
15
,
109
127
(
1996
).
85.
C. J.
Sumner
,
E. A.
Lopez-Poveda
,
L. P.
O’Mard
, and
R.
Meddis
, “
A revised model of the inner-hair cell and auditory-nerve complex
,”
J. Acoust. Soc. Am.
111
,
2178
2188
(
2002
).
86.
P.
Dallos
, “
Response characteristics of mammalian cochlear hair cells
,”
J. Neurosci.
5
,
1591
1608
(
1985
).
87.
B.
Sachs
,
Murray
and
P. J.
Abbas
, “
Rate versus level function for auditory-nerve fibers in cat: Tone-burst stimuli
,”
J. Acoust. Soc. Am.
56
,
1835
1847
(
1974
).
88.
M.
Winter
,
Ian R.
Palmer
, and
Alan
, “
Intensity coding in low-frequency auditory-nerve fibers of the guinea pig
,”
J. Acoust. Soc. Am.
90
,
1958
1967
(
1991
).
89.
R.
Schaette
and
R.
Kempter
, “
Development of tinnitus-related neuronal hyperactivity through homeostatic plasticity after hearing loss: A computational model
,”
Eur. J. Neurosci.
23
,
3124
3138
(
2006
).
90.
A. J.
Oxenham
and
C. J.
Plack
, “
A behavioral measure of basilar-membrane nonlinearity in listeners with normal and impaired hearing
,”
J. Acoust. Soc. Am.
101
,
3666
3675
(
1997
).
91.
C. J.
Plack
and
A. J.
Oxenham
, “
Basilar-membrane nonlinearity estimated by pulsation threshold
,”
J. Acoust. Soc. Am.
107
,
501
507
(
2000
).
You do not currently have access to this content.