The study of cavitation inception in liquids rarely yields reproducible data, unless special control is taken on the cleanliness of the experimental environment. In this paper, an experimental technique is demonstrated which allows repeatable measurements of cavitation activity in liquid-particle suspensions. In addition, the method is noninvasive: cavitation bubbles are generated using a shock-wave generator, and they are photographed using a digital camera. The cavitation activity is obtained after suitable image processing steps. From these measurements, the importance of the particle’s surface structure and its chemical composition is revealed, with polystyrene and polyamide particles generating the highest yields. Further findings are that cavitation nuclei become depleted with an increasing number of experiments, and the existence of nuclei with varying negative pressure thresholds. Finally, a decrease of the cavitation yield is achieved by prepressurization of the suspension—indicating that the cavitation nuclei are gaseous.

1.
E. N.
Harvey
,
D. K.
Barnes
,
W. D.
McElroy
,
A. H.
Whiteley
,
D. C.
Pease
, and
K. W.
Cooper
, “
Bubble formation in animals
,”
J. Cell. Comp. Physiol.
24
,
1
22
(
1944
).
2.
M.
Greenspan
and
C. E.
Tschiegg
, “
Radiation-induced acoustic cavitation: Apparatus and some results
,”
J. Res. Natl. Bur. Stand., Sect. C
71
,
299
312
(
1967
).
3.
M.
Strasberg
, “
Onset of ultrasonic cavitation in tap water
,”
J. Acoust. Soc. Am.
31
,
163
176
(
1959
).
4.
R. E.
Apfel
, “
The role of impurities in cavitation-threshold determination
,”
J. Acoust. Soc. Am.
48
,
1179
1186
(
1970
).
5.
L. A.
Crum
, “
Tensile strength of water
,”
Nature (London)
278
,
148
149
(
1979
).
6.
K. A.
Mørch
, “
Cavitation nuclei and bubble formation—A dynamic liquid-solid interface problem
,”
J. Fluoresc.
122
,
494
498
(
2000
).
7.
A. A.
Atchley
and
A.
Prosperetti
, “
The crevice model of bubble nucleation
,”
J. Acoust. Soc. Am.
86
,
1065
1084
(
1989
).
8.
W. J.
Galloway
, “
An experimental study of acoustically induced cavitation in liquids
,”
J. Acoust. Soc. Am.
26
,
849
857
(
1954
).
9.
R. A.
Roy
,
S. I.
Madanshetty
, and
R. E.
Apfel
, “
An acoustic backscattering technique for the detection of transient cavitation produced by microsecond pulses of ultrasound
,”
J. Acoust. Soc. Am.
87
,
2451
2458
(
1989
).
10.
S. I.
Madanshetty
, “
A conceptual model for acoustic microcavitation
,”
J. Acoust. Soc. Am.
98
,
2681
2689
(
1995
).
11.
C. X.
Deng
,
Q.
Xu
,
R. E.
Apfel
, and
C. K.
Holland
, “
Inertial cavitation produced by pulsed ultrasound in controlled host media
,”
J. Acoust. Soc. Am.
100
,
1199
1208
(
1996
).
12.
H. B.
Marschall
,
K. A.
Mørch
,
A. P.
Keller
, and
M.
Kjeldsen
, “
Cavitation inception by almost spherical solid particles in water
,”
Phys. Fluids
15
,
545
553
(
2003
).
13.
S. I.
Madanshetty
and
R. E.
Apfel
, “
Acoustic microcavitation: Enhancement and applications
,”
J. Acoust. Soc. Am.
90
,
1508
1514
(
1991
).
14.
S. I.
Madanshetty
,
R.
Roy
, and
R. E.
Apfel
, “
Acoustic microcavitation-Its active and passive acoustic detection
,”
J. Acoust. Soc. Am.
90
,
1515
1526
(
1991
).
15.
A. A.
Atchley
,
L. A.
Frizzell
,
R. E.
Apfel
,
C. K.
Holland
,
S.
Madanshetty
, and
R. A.
Roy
, “
Thresholds for cavitation produced in water by pulsed ultrasound
,”
Ultrasonics
26
,
280
285
(
1988
).
16.
M.
Arora
,
C. D.
Ohl
, and
K. A.
Mørch
, “
Cavitation inception on microparticles: A self-propelled particle accelerator
,”
Phys. Rev. Lett.
92
,
174501
1
(
2004
).
17.
M.
Arora
,
L.
Junge
, and
C. D.
Ohl
, “
Cavitation cluster dynamics in shock-wave lithotripsy. 1. Free field
,”
Ultrasound Med. Biol.
31
,
827
839
(
2005
).
18.
Y. A.
Pishchalnikov
,
O. A.
Sapozhnikov
, and
M. R.
Bailey
, “
Cavitation selectively reduces the negative-pressure phase of lithotripter shock pulses
,”
ARLO
6
,
280
286
(
2005
).
19.
O. A.
Sapozhnikov
,
V. A.
Khokhlova
,
M. R.
Bailey
,
J. C.
Williams
,
J. A.
McAteer
,
R. O.
Cleveland
, and
L. A.
Crum
, “
Effect of overpressure and pulse repetition frequency on cavitation in shock wave lithotripsy
,”
J. Acoust. Soc. Am.
112
,
1183
1195
(
2002
).
20.
P. S.
Epstein
and
M. S.
Plesset
, “
On the stability of gas bubbles in liquid-gas solutions
,”
J. Chem. Phys.
18
,
1505
1509
(
1950
).
21.
K. A.
Mørch
, private communication.
22.
R. E.
Apfel
, “
Acoustic cavitation inception
,”
Ultrasonics
22
,
168
173
(
1984
).
You do not currently have access to this content.