The article reports acoustic measurements on short corrugated pipes with flow. Such pipes might generate high sound levels associated with length resonances. One of the main objectives of the study was to estimate the location of the effective sources by studying the energy flow through the pipes. It was found that a short section of corrugations will only produce sound effectively when placed at the inflow end, while for fully corrugated pipes, the sound-producing regions are located around the pressure maxima of the observed standing waves. It was further found that the net energy flow is in the upstream direction for nearly the complete length of pipe.

1.
W.
Burstyn
, “
Eine neue pfeife (a new pipe.)
,”
Z. Tech. Phys. (Leipzig)
3
,
179
180
(
1922
).
2.
P.
Cermak
, “
Über die tonbildung bei metallschläuchen mit eingedrücktem spiralgang (on the sound generation in flexible metal hoses with spiralling grooves)
,”
Phys. Z.
23
,
394
397
(
1922
).
3.
F. S.
Crawford
, “
Singing corrugated pipes
,”
Am. J. Phys.
42
,
278
288
(
1974
).
4.
M. P.
Silverman
and
G. M.
Cushman
, “
Voice of the dragon: The rotating corrugated resonator
,”
Eur. J. Phys.
10
,
298
304
(
1989
).
5.
L. H.
Cadwell
, “
Singing corrugated pipes revisited
,”
Am. J. Phys.
62
,
224
227
(
1994
).
6.
S.
Serafin
and
J.
Kojs
, “
The voice of the dragon: A physical model of a rotating corrugated tube
,” in Proceedings of the Sixth International Conference on Digital Audio Effects (DAFex-03), London, 8–11 September 2003.
7.
Y.
Nakamura
and
N.
Fukamachi
, “
Sound generation in corrugated tubes
,”
Fluid Dyn. Res.
7
,
251
261
(
1991
).
8.
U.
Kristiansen
,
T. A.
Reinen
, and
G. A.
Wiik
, “
Sound generation in corrugated pipes
,” in Proceedings of the Internoise 2005, Rio de Janeiro, Brazil, 7–10 August 2005.
9.
A. M.
Binnie
, “
Self induced waves in a conduit with corrugated walls. ii. Experiments with air in corrugated and finned tubes
,”
Proc. R. Soc. London, Ser. A
262
,
179
197
(
1961
).
10.
A. M.
Binnie
, “
Self induced waves in a conduit with corrugated walls. i. Experiments with water in an open horizontal channel with vertically corrugated sides
,”
Proc. R. Soc. London, Ser. A
259
,
18
27
(
1960
).
11.
A. M.
Petrie
and
I. D.
Huntley
, “
The acoustic output produced by a steady airflow through a corrugated duct
,”
J. Sound Vib.
70
,
1
9
(
1980
).
12.
Lecture Notes on the Mathematics of Acoustics
, edited by
M. C. M.
Wright
(
Imperial College Press
, London,
2005
), Chap. 11.
13.
V. F.
Kopiev
,
M. A.
Mironov
, and
V. S.
Solntseva
, “
Sound generation, amplification and absorption by air flow through waveguide with periodically corrugated boundary
,” in Proceedings of Forum Acusticum, Budapest, Hungary, 29 August - 2 September 2005.
14.
M. S.
Howe
, “
Mechanism of sound generation by low Mach number flow over a wall cavity
,”
J. Sound Vib.
273
,
103
123
(
2004
).
15.
J. C.
Bruggeman
,
A.
Hirschberg
,
M. E. H.
van Dongen
,
A. P. J.
Wijnands
, and
J.
Gorter
, “
Self-sustained aero-acoustic pulsations in gas transport systems: Experimental study of the influence of closed side branches
,”
J. Sound Vib.
150
,
371
393
(
1991
).
16.
S.
Dequand
,
S. J.
Hulshoff
, and
A.
Hirschberg
, “
Self-sustained oscillations in a closed side branch system
,”
J. Sound Vib.
265
,
359
386
(
2003
).
17.
Kook
and
L.
Mongeau
, “
Analysis of the periodic pressure fluctuations induced by flow over a cavity
,”
J. Sound Vib.
251
,
823
846
(
2002
).
18.
J. Y.
Chung
and
D. A.
Blaser
, “
Transfer function method of measuring in-duct acoustic properties. i. Theory
,”
J. Acoust. Soc. Am.
68
,
907
913
(
1980
).
19.
WinMLS Morset Sound Development, Trondheim, Norway.
20.
R. M.
Munt
, “
Acoustic transmission properties of a jet pipe with subsonic jet flow. I. The cold jet reflection coefficient
,”
J. Sound Vib.
142
,
413
436
(
1990
).
21.
S.
Allam
and
M.
Åbom
, “
Investigation of damping and radiation using full plane wave decomposition in ducts
,”
J. Sound Vib.
292
,
519
534
(
2006
).
22.
F. J.
Fahy
, “
Measurement of acoustic intensity using the cross-spectral density of two microphone signals
,”
J. Acoust. Soc. Am.
62
,
1057
1059
(
1977
).
23.
O. K.
ØPettersen
, “
Sound intensity measurements for describing acoustic power flow
,”
Appl. Acoust.
14
,
387
397
(
1981
).
24.
F. J.
Fahy
,
Sound Intensity
(
Spon
, London,
1995
).
25.
L. E.
Kinsler
,
A. R.
Frey
,
A. B.
Coppens
, and
J. V.
Sanders
,
Fundamentals of Acoustics
(
Wiley
, New York,
2000
).
26.
Brass Instruments Analysis System (BIAS)
, Institute for Musical Acoustics, Wienna.
27.
J. P.
Dalmont
, “
Acoustic impedance measurement. i. A review
,”
J. Sound Vib.
243
(
3
),
427
439
(
2001
).
28.
B. J.
Forbes
and
E. R.
Pike
, “
Acoustical Klein-Gordon equation: A time- independent perturbation analysis
,”
Phys. Rev. Lett.
93
(
5
),
054301
(
2004
).
29.
T.
Colonius
,
A. J.
Basu
, and
C. W.
Rowley
, “
Computation of sound generation and flow/acoustic instabilities in the flow past an open cavity
,” in Proceedings of the FEDSM99 3rd ASME/JSME Joint Fluids Engineering Conference, San Francisco, 18-23 July 1999.
30.
X.
Gloerfelt
,
C.
Bailly
, and
D.
Juvé
, “
Direct computation of the noise radiated by a subsonic cavity flow and application of integral methods
,”
J. Sound Vib.
266
,
119
146
(
2002
).
31.
J. C.
Hardin
and
D. S.
Pope
, “
Sound generation by flow over a two-dimensional cavity
,”
AIAA J.
33
,
407
412
(
1995
).
You do not currently have access to this content.