Acoustic methods of land mine detection rely on the vibrations of the top plate of the mine in response to sound. For granular soil (e.g., sand), the particle size is expected to influence the mine response. This hypothesis is studied experimentally using a plate loaded with dry sand of various sizes from hundreds of microns to a few millimeters. For low values of sand mass, the plate resonance decreases with added mass and eventually reaches a minimum without particle size dependence. After the minimum, a frequency increase is observed with additional mass that includes a particle-size effect. Analytical nondissipative continuum models for granular media capture the observed particle-size dependence qualitatively but not quantitatively. In addition, a continuum-based finite element model (FEM) of a two-layer plate is used, with the sand layer replaced by an equivalent elastic layer for evaluation of the effective properties of the layer. Given a thickness of sand layer and corresponding experimental resonance, an inverse FEM problem is solved iteratively to give the effective Young’s modulus and bending stiffness that matches the experimental frequency. It is shown that a continuum elastic model must employ a thickness-dependent elastic modulus in order to match experimental values.

1.
S. H.
Lee
,
W. R.
Scott
, Jr.
,
J. S.
Martin
,
G. D.
Larson
, and
G. S.
McCall
 II
, “
Technical issues associated with the detection of buried land mines with high-frequency seismic waves
,”
SPIE’s Proceedings on Detection and Temediation Technologies for Mines and Minelike Targets VII
,
2002
, Vol.
4742
, pp.
617
628
.
2.
J. M.
Sabatier
and
N.
Xiang
, “
Laser-Doppler based acoustic-to-seismic detection of buried mines
,”
SPIE’s Proceedings on Detection and Remediation Technologies for Mines and Minelike Targets IV
,
2003
, Vol.
3710
, pp.
215
222
.
3.
W. R.
Scott
, Jr.
,
S. H.
Lee
,
G. D.
Larson
,
J. S.
Martin
, and
G. S.
McCall
 II
, “
Use of high-frequency seismic waves for the detection of buried land mines
,”
SPIE’s Proceedings on Detection and Remediation Technologies for Mines and Minelike Targets VI
,
2001
, Vol.
4394
, pp.
543
552
.
4.
N.
Xiang
and
J. M.
Sabatier
, “
An experimental study on antipersonnel landmine detection using acoustic-to-seismic coupling
,”
J. Acoust. Soc. Am.
113
,
1333
1341
(
2003
).
5.
D. M.
Donskoy
, “
Nonlinear vibro-acoustic technique for land mine detection
,”
SPIE’s Proceedings on Detection and Remediation Technologies for Mine and Minelike Targets III
,
1998
, Vol.
3392
, pp.
211
217
.
6.
D.
Donskoy
,
A.
Ekimov
,
N.
Sedunov
, and
M.
Tsionskiy
, “
Nonlinear seismo-acoustic land mine detection and discrimination
,”
J. Acoust. Soc. Am.
111
,
2705
2714
(
2002
).
7.
D. M.
Donskoy
and
A.
Ekimov
, “
Nonlinear vibrations of buried landmines
,”
J. Acoust. Soc. Am.
117
,
690
700
(
2005
).
8.
A.
Zagrai
,
D.
Donskoy
, and
A.
Ekimov
, “
Resonance vibrations of buried landmines
,”
SPIE’s Proceedings on Detection and Remediation Technologies for Mines and Minelike Targets IX
,
2004
, Vol.
5415
, pp.
21
29
.
9.
M. S.
Korman
and
J. M.
Sabatier
, “
Nonlinear acoustic techniques for landmine detection
,”
J. Acoust. Soc. Am.
116
,
3354
3369
(
2004
).
10.
A.
Zagrai
,
D.
Donskoy
, and
A.
Ekimov
, “
Structural vibrations of buried land mines
,”
J. Acoust. Soc. Am.
118
,
3619
3628
(
2005
).
11.
W.
Leissa
,
Vibration of Plates
(
Acoustical Society of America
,
1993
).
12.
J. K.
Mitchell
,
Fundamentals of Soil Behavior
(
Wiley
,
New York
,
1976
).
13.
M. S.
Korman
(private communication).
14.
P. J.
Digby
, “
The effective elastic moduli of porous granular rocks
,”
J. Appl. Mech.
48
,
803
808
(
1981
).
15.
K.
Walton
, “
The effective elastic moduli of a random packing of spheres
,”
J. Mech. Phys. Solids
35
,
213
226
(
1987
).
16.
J.
Jenkins
,
D.
Johnson
,
L.
LaRagione
, and
H.
Makse
, “
Fluctuations and the effective moduli of an isotropic, random aggregates of identical, frictionless spheres
,”
J. Mech. Phys. Solids
53
,
197
225
(
2005
).
17.
K. L.
Johnson
,
Contact Mechanics
(
Cambridge University Press
,
New York
,
1985
).
18.
M.
Prasad
and
R.
Meissner
, “
Attenuation mechanisms in sands: Laboratory versus theoretical (Biot) data
,”
Geophysics
57
,
710
719
(
1992
).
19.
R.
Backrach
,
J.
Dvorkin
, and
A. M.
Nur
, “
Seismic velocities and Poisson’s ratio of shallow unconsolidated sands
,”
Geophysics
65
,
559
564
(
2000
).
20.
M.
Kimura
, “
Frame bulk modulus of porous granular marine sediments
,”
J. Acoust. Soc. Am.
120
,
699
710
(
2006
).
21.
H. A.
Makse
, “
Why effective medium theory fails in granular materials
,”
Phys. Rev. Lett.
83
,
5070
5073
(
1999
).
22.
Y.
Stavsky
and
R.
Loewy
, “
Vibration of isotropic composite circular plates
,”
J. Acoust. Soc. Am.
49
,
1542
1550
(
1971
).
23.
ABAQUS V.6.4/Standard.
24.
C. F.
Gerald
and
P. O.
Wheatley
,
Applied Numerical Analysis
(
Pearson Education
,
2004
).
25.
T.
Yanagida
,
A. J.
Matchett
,
B. N.
Asmar
,
P. A.
Langston
,
J. K.
Walters
, and
J. M.
Coulthard
, “
Dynamic response of well-mixed binary particulate systems subjected to low magnitude vibration
,”
Adv. Powder Technol.
14
,
589
604
(
2003
).
26.
M. L.
Oelze
,
W. D.
O’Brien
, Jr.
, and
R. G.
Darmody
, “
Measurement of attenuation and speed of sound in soils
,”
Soil Sci. Soc. Am. J.
66
,
788
796
(
2002
).
You do not currently have access to this content.