An analytic model is developed for the time-dependent ultrasound field reflected off a randomly rough vibrating surface for a continuously scanning ultrasound vibrometer system in bistatic configuration. Kirchhoff’s approximation to Green’s theorem is applied to model the three-dimensional scattering interaction of the ultrasound wave field with the vibrating rough surface. The model incorporates the beam patterns of both the transmitting and receiving ultrasound transducers and the statistical properties of the rough surface. Two methods are applied to the ultrasound system for estimating displacement and velocity amplitudes of an oscillating surface: incoherent Doppler shift spectra and coherent interferometry. Motion of the vibrometer over the randomly rough surface leads to time-dependent scattering noise that causes a randomization of the received signal spectrum. Simulations with the model indicate that surface displacement and velocity estimation are highly dependent upon the scan velocity and projected wavelength of the ultrasound vibrometer relative to the roughness height standard deviation and correlation length scales of the rough surface. The model is applied to determine limiting scan speeds for ultrasound vibrometer measuring ground displacements arising from acoustic or seismic excitation to be used in acoustic landmine confirmation sensing.

1.
M. S.
Young
and
Y. C.
Li
, “
A high precision ultrasonic system for vibration measurements
,”
Rev. Sci. Instrum.
63
,
5435
5441
(
1992
).
2.
Y.
Yamakoshi
,
J.
Sato
, and
T.
Sato
, “
Ultrasonic imaging of internal vibration of soft tissue under forced vibration
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
37
,
45
53
(
1990
).
3.
J. M.
Sabatier
and
N.
Xiang
, “
An investigation of acoustic-to-seismic coupling to detect buried antitank mines
,”
IEEE Trans. Geosci. Remote Sens.
39
,
1146
1154
(
2001
).
4.
W. R.
Scott
,
J. S.
Martin
, and
G. D.
Larson
, “
Experimental model for a seismic landmine detection system
,”
IEEE Trans. Geosci. Remote Sens.
39
,
1155
1164
(
2001
).
5.
N.
Xiang
and
J. M.
Sabatier
, “
An experimental study on antipersonnel landmine detection using acoustic-to-seismic coupling
,”
J. Acoust. Soc. Am.
113
,
1333
1341
(
2003
).
6.
J. S.
Martin
 et al., “
Ultrasonic displacement sensor for the seismic detection of buried land mines
,”
Proc. SPIE
4742
,
606
616
(
2002
).
7.
A. G.
Petculescu
and
J.
Sabatier
, “
Air-coupled ultrasonic sensing of grass-covered vibrating surfaces; qualitative comparisons with laser Doppler vibrometry
,”
J. Acoust. Soc. Am.
115
,
1557
1564
(
2004
).
8.
D.
Fenneman
,
B.
Libbey
, and
J.
Martin
, “
Evaluation of an ultrasonic displacement sensor
,”
J. Acoust. Soc. Am.
115
,
2416
(
2004
).
9.
W. P.
Arnott
and
J. M.
Sabatier
, “
Laser-Doppler vibrometer measurements of acoustic to seismic coupling
,”
Appl. Acoust.
30
,
279
291
(
1990
).
10.
V.
Arunchuk
,
A. K.
Lal
,
C. F.
Hess
, and
J. M.
Sabatier
, “
Multi-beam laser Doppler vibrometer for landmine detection
,”
J. Op. Eng.
45
,
104302
(
2006
).
11.
L. E.
Drain
,
The Laser Doppler Technique
(
Wiley
,
Chichester
,
1980
).
12.
A.
Kannath
and
R. J.
Dewhurst
, “
Real-time measurement of acoustic field displacements using ultrasonic interferometry
,”
Meas. Sci. Technol.
15
,
N59
N66
(
2004
).
13.
W. R.
Scott
,
J. C.
Schroeder
, and
J. S.
Martin
, “
An acousto-electromagnetic sensor for locating land mines
,”
Proc. SPIE
3392
,
176
186
(
1998
).
14.
S.
Rothberg
and
B.
Halkon
, “
Laser vibrometry meets laser speckle
,”
Proc. SPIE
5503
,
280
291
(
2004
).
15.
S.
Rothberg
,
J. R.
Baker
, and
N. A.
Hallowell
, “
Laser vibrometry: pseudo-vibrations
,”
J. Sound Vib.
135
,
516
522
(
1989
).
16.
P. M.
Morse
and
K. U.
Ingard
,
Theoretical Acoustics
(
Princeton University Press
,
Princeton, NJ
,
1986
).
17.
J. A.
Ogilvy
,
Theory of Wave Scattering from Random Rough Surfaces
(
IOP
,
Bristol
,
1991
).
18.
M.
Abromowitz
and
I. A.
Stegun
,
Handbook of Mathematical Functions
(
Dover
,
New York
,
1972
).
19.
J. W.
Goodman
,
Statistical Optics
(
Wiley
,
New York
,
1985
).
20.
N. C.
Makris
, “
The effect of saturated transmission scintillation on ocean acoustic intensity measurements
,”
J. Acoust. Soc. Am.
100
,
769
783
(
1996
).
21.
T.
Chen
,
P.
Ratilal
, and
N. C.
Makris
, “
Mean and variance of the forward field propagated through three-dimensional random internal waves in a continental-shelf waveguide
,”
J. Acoust. Soc. Am.
118
,
3560
3574
(
2005
).
22.
L.
Mandel
and
E.
Wolf
,
Optical Coherence and Quantum Optics
(
Cambridge University Press
,
New York
,
1995
).
23.
P.
Ratilal
and
N. C.
Makris
, “
Mean and covariance of the forward field propagated through a stratified ocean waveguide with three-dimensional random inhomogeneities
,”
J. Acoust. Soc. Am.
118
,
3532
3559
(
2005
).
24.
B. R.
Frieden
,
Probability, Statistical Optics, and Data Testing
(
Springer
,
New York
,
1936
).
25.
P.
Beckmann
and
A.
Spizzichino
,
The Scattering of Electromagnetic Waves from Rough Surfaces
(
Pergamon/Macmillan
,
New York
,
1963
).
26.
J. C.
Dainty
(editor), “
Laser Speckle and Related Phenomena
,”
Topics in Applied Physics
, Vol. 9 (
Springer-Verlag
,
Berlin
1975
).
You do not currently have access to this content.