The single-scattering solution is implemented in a formulation that makes it possible to accurately handle solid-solid interfaces with the parabolic equation method. Problems involving large contrasts across sloping stratigraphy can be handled by subdividing a vertical interface into a series of two or more scattering problems. The approach can handle complex layering and is applicable to a large class of seismic problems. The solution of the scattering problem is based on an iteration formula, which has improved convergence in the new formulation, and the transverse operator of the parabolic wave equation, which is implemented efficiently in terms of banded matrices. Accurate solutions can often be obtained by using only one iteration.

1.
F. B.
Jensen
,
W. A.
Kuperman
,
M. B.
Porter
, and
H.
Schmidt
,
Computational Ocean Acoustics
(
American Institute of Physics
, New York,
1994
), pp.
343
412
.
2.
R. R.
Greene
, “
A high-angle one-way wave equation for seismic wave propagation along rough and sloping interfaces
,”
J. Acoust. Soc. Am.
77
,
1991
1998
(
1985
).
3.
M. D.
Collins
, “
A higher-order parabolic equation for wave propagation in an ocean overlying an elastic bottom
,”
J. Acoust. Soc. Am.
86
,
1459
1464
(
1989
).
4.
B. T. R.
Wetton
and
G. H.
Brooke
, “
One-way wave equations for seismoacoustic propagation in elastic waveguides
,”
J. Acoust. Soc. Am.
87
,
624
632
(
1990
).
5.
M. D.
Collins
, “
Higher-order parabolic approximations for accurate and stable elastic parabolic equations with application to interface wave propagation
,”
J. Acoust. Soc. Am.
89
,
1050
1057
(
1991
).
6.
W.
Jerzak
,
W. L.
Siegmann
, and
M. D.
Collins
, “
Modeling Rayleigh and Stoneley waves and other interface and boundary effects with the parabolic equation
,”
J. Acoust. Soc. Am.
117
,
3497
3503
(
2005
).
7.
M. B.
Porter
,
F. B.
Jensen
, and
C. M.
Ferla
, “
The problem of energy conservation in one-way models
,”
J. Acoust. Soc. Am.
89
,
1058
1067
(
1991
).
8.
M. D.
Collins
and
E. K.
Westwood
, “
A higher-order energy-conserving parabolic equation for range-dependent ocean depth, sound speed, and density
,”
J. Acoust. Soc. Am.
89
,
1068
1075
(
1991
).
9.
M. D.
Collins
and
R. B.
Evans
, “
A two-way parabolic equation for acoustic back scattering in the ocean
,”
J. Acoust. Soc. Am.
91
,
1357
1368
(
1992
).
10.
M. D.
Collins
, “
An energy-conserving parabolic equation for elastic media
,”
J. Acoust. Soc. Am.
94
,
975
982
(
1993
).
11.
M. D.
Collins
and
W. L.
Siegmann
, “
A complete energy conservation correction for the elastic parabolic equation
,”
J. Acoust. Soc. Am.
104
,
687
692
(
1999
).
12.
M. D.
Collins
, “
A two-way parabolic equation for elastic media
,”
J. Acoust. Soc. Am.
93
,
1815
1825
(
1993
).
13.
M. D.
Collins
and
D. K.
Dacol
, “
A mapping approach for handling sloping interfaces
,”
J. Acoust. Soc. Am.
107
,
1937
1942
(
2000
).
14.
D. A.
Outing
,
W. L.
Siegmann
,
M. D.
Collins
, and
E. K.
Westwood
, “
Generalization of the rotated parabolic equation to variable slopes
,”
J. Acoust. Soc. Am.
120
,
3534
3538
(
2006
).
15.
H.
Kolsky
,
Stress Waves in Solids
(
Dover
, New York,
1963
).
16.
M. D.
Collins
, “
A split-step Padé solution for the parabolic equation method
,”
J. Acoust. Soc. Am.
93
,
1736
1742
(
1993
).
You do not currently have access to this content.