The exact scattering by a sphere centered on a Bessel beam is expressed as a partial wave series involving the scattering angle relative to the beam axis and the conical angle of the wave vector components of the Bessel beam. The sphere is assumed to have isotropic material properties so that the nth partial wave amplitude for plane wave scattering is proportional to a known partial-wave coefficient. The scattered partial waves in the Bessel beam case are also proportional to the same partial-wave coefficient but now the weighting factor depends on the properties of the Bessel beam. When the wavenumber-radius product ka is large, for rigid or soft spheres the scattering is peaked in the backward and forward directions along the beam axis as well as in the direction of the conical angle. These properties are geometrically explained and some symmetry properties are noted. The formulation is also suitable for elastic and fluid spheres. A partial wave expansion of the Bessel beam is noted.

1.
J.
Durnin
, “
Exact solutions for nondiffracting beams. I. The scalar theory
,”
J. Opt. Soc. Am. A
4
,
651
654
(
1987
).
2.
J.
Durnin
,
J. J.
Miceli
, Jr.
, and
J. H.
Eberly
, “
Diffraction-free beams
,”
Phys. Rev. Lett.
58
,
1499
1501
(
1987
).
3.
D. K.
Hsu
,
F. J.
Margetan
, and
D. O.
Thompson
, “
Bessel beam ultrasonic transducer: Fabrication method and experimental results
,”
Appl. Phys. Lett.
55
,
2066
2068
(
1989
).
4.
J. A.
Campbell
and
S.
Soloway
, “
Generation of a nondiffracting beam with frequency-independent beamwidth
,”
J. Acoust. Soc. Am.
88
,
2467
2477
(
1990
).
5.
J.-y.
Lu
and
J. F.
Greenleaf
, “
Ultrasonic nondiffracting transducer for medical ultrasonics
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
37
,
438
447
(
1990
).
6.
P. L.
Marston
, “
Geometrical and catastrophe optics methods in scattering
,”
Phys. Acoust.
21
,
1
234
(
1992
), See Section 2.15 p. 44–47.
7.
P. R.
Stepanishen
and
J.
Sun
, “
Acoustic bullets: Transient Bessel beams generated by planar apertures
,”
J. Acoust. Soc. Am.
102
,
3308
3318
(
1997
).
8.
K. B.
Cunningham
and
M. F.
Hamilton
, “
Bessel beams of finite amplitude in absorbing fluids
,”
J. Acoust. Soc. Am.
108
,
519
525
(
2000
).
9.
D.
McGloin
and
K.
Dholakia
, “
Bessel beams: diffraction in a new light
,”
Contemp. Phys.
46
,
15
28
(
2005
).
10.
G. C.
Gaunaurd
and
H.
Uberall
, “
Acoustics of finite beams
,”
J. Acoust. Soc. Am.
63
,
5
16
(
1978
).
11.
P. J.
Westervelt
, “
The theory of steady forces caused by sound waves
,”
J. Acoust. Soc. Am.
23
,
312
315
(
1951
).
12.
P. L.
Marston
, “
Axial radiation force of a Bessel beam on a sphere and direction reversal of the force
,”
J. Acoust. Soc. Am.
120
,
3518
3524
(
2006
).
13.
M.
Redwood
,
Mechanical Waveguides
(
Pergamon Press
, Oxford,
1960
), pp.
286
287
.
14.
J. J.
Bowman
,
T. B. A.
Senior
, and
P. L. E.
Uslenghi
,
Electromagnetic and Acoustic Scattering by Simple Shapes
(
Taylor and Francis
, Abingdon,
1988
), pp.
354
380
.
15.
V. C.
Anderson
, “
Sound scattering from a fluid sphere
,”
J. Acoust. Soc. Am.
22
,
426
431
(
1950
).
16.
K. A.
Sage
,
J.
George
, and
H.
Uberall
, “
Multipole resonances in sound scattering from gas bubbles in a liquid
,”
J. Acoust. Soc. Am.
65
,
1413
1422
(
1979
).
17.
G. C.
Gaunaurd
and
H.
Uberall
, “
RST analysis of monostatic and bistatic acoustic echoes from an elastic sphere
,”
J. Acoust. Soc. Am.
73
,
1
12
(
1983
).
18.
S. G.
Kargl
and
P. L.
Marston
, “
Observations and modeling of the backscattering of short tone bursts from a spherical shell: Lambwave echoes, glory, and axial reverberations
,”
J. Acoust. Soc. Am.
85
,
1014
1028
(
1989
).
19.
P. L.
Marston
, “
Generalized optical theorem for scatterers having inversion symmetry: applications to acoustic backscattering
,”
J. Acoust. Soc. Am.
109
,
1291
1295
(
2001
).
20.
L. I.
Shiff
,
Quantum Mechanics
, 3rd ed. (
McGraw-Hill
, New York,
1968
), pp.
131
133
.
21.
J. D.
Jackson
,
Classical Electrodynamics
, 3rd ed. (
Wiley
, New York,
1999
), Secs. 3.5–3.6, pp.
107
111
.
22.
R. Y.
Nishi
, “
Scattering and absorption of sound-waves by a gas bubble in a viscous-liquid
,”
Acustica
33
,
65
74
(
1975
).
23.
A.
Prosperetti
, “
Thermal effects and damping mechanisms in the forced radial oscillations of gas bubbles in liquids
,”
J. Acoust. Soc. Am.
61
,
17
27
(
1977
).
24.
P. L.
Marston
, “
Quantitative ray methods for scattering
” in
Encyclopedia of Acoustics
, edited by
M. J.
Crocker
(
Wiley
, New York,
1997
), Chap. 43, pp.
483
492
.
25.
H. C.
van de Hulst
, “
A theory of the anti-coronae
,”
J. Opt. Soc. Am.
37
,
16
22
(
1947
).
26.
P. L.
Marston
and
D. S.
Langley
, “
Glory- and rainbow-enhanced acoustic backscattering from fluid spheres: models for diffracted axial focusing
,”
J. Acoust. Soc. Am.
73
,
1464
1475
(
1983
).
27.
W. P.
Arnott
and
P. L.
Marston
, “
Unfolding axial caustics of glory scattering with harmonic angular perturbations of toroidal wavefronts
,”
J. Acoust. Soc. Am.
85
,
1427
40
(
1989
).
You do not currently have access to this content.