In vitro experiments and an elastic wave model were used to analyze how stress is induced in kidney stones by lithotripsy and to test the roles of individual mechanisms—spallation, squeezing, and cavitation. Cylindrical U30 cement stones were treated in an HM-3-style lithotripter. Baffles were used to block specific waves responsible for spallation or squeezing. Stones with and without surface cracks added to simulate cavitation damage were tested in glycerol (a cavitation suppressive medium). Each case was simulated using the elasticity equations for an isotropic medium. The calculated location of maximum stress compared well with the experimental observations of where stones fractured in two pieces. Higher calculated maximum tensile stress correlated with fewer shock waves required for fracture. The highest calculated tensile stresses resulted from shear waves initiated at the proximal corners and strengthened along the side surfaces of the stone by the liquid-borne lithotripter shock wave. Peak tensile stress was in the distal end of the stone where fracture occurred. Reflection of the longitudinal wave from the distal face of the stone—spallation—produced lower stresses. Surface cracks accelerated fragmentation when created near the location where the maximum stress was predicted.

1.
K.
Kerbl
,
J.
Rehman
,
J.
Landman
,
D.
Lee
,
C.
Sundaram
, and
R. V.
Clayman
, “
Current management of urolithiasis: Progress or regress?
,”
J. Endourol
16
,
281
288
(
2002
).
2.
A. P.
Evan
,
J. A.
McAteer
,
J. C.
Williams
,
L. R.
Willis
,
M. R.
Bailey
,
L. A.
Crum
,
J. E.
Lingeman
, and
R. O.
Cleveland
, “
Shock wave physics of lithotripsy: Mechanisms of shock wave action and progress toward improved SWL
,” in
Textbook of Minimally Invasive Urology
, edited by
R.
Moore
,
J. T.
Bishoff
,
S.
Loening
, and
S. G.
Docimo
(
Martin Dunitz
,
London
,
2004
), Chap. 28, pp.
425
438
.
3.
J. A.
McAteer
,
J. C.
Williams
, Jr.
,
M. R.
Bailey
,
R. O.
Cleveland
, and
A. P.
Evan
, “
Strategies for improved shock wave lithotripsy
,”
Minerva Urol. Nefrol
57
,
271
279
(
2005
).
4.
B.
Sturtevant
, “
Shock wave physics of lithotripters
,” in
Smith’s Textbook of Endourology
, edited by
A. D.
Smith
(
Quality Medical Publishing
,
St. Louis
,
1996
), pp.
529
552
.
5.
G. I.
Barenblatt
, “
The mathematical theory of equilibrium cracks in brittle fracture
,”
Adv. Appl. Mech.
7
,
55
129
(
1962
).
6.
M.
Ortiz
, “
Microcrack coalescence and macroscopic crack growth initiation in brittle solids
,”
Int. J. Solids Struct.
24
,
231
250
(
1988
).
7.
M.
Lokhandwalla
and
B.
Sturtevant
, “
Fracture mechanics model of stone comminution in ESWL and implications for tissue damage
,”
Phys. Med. Biol.
45
,
1923
1940
(
2000
).
8.
C.
Chaussy
,
E.
Schmiedt
,
D.
Jocham
,
V.
Walther
,
W.
Brendel
,
B.
Forssmann
, and
W.
Hepp
,
Extracorporeal Shock Wave Lithotripsy: New Aspects of the Treatment of Kidney Stone Disease
, edited by
C.
Chaussy
(
Karger
,
Basel
,
1982
).
9.
M.
Delius
,
G.
Heine
, and
W.
Brendel
, “
A mechanism of gallstone destruction by extracorporeal shock waves
,”
Naturwiss.
75
,
200
201
(
1988
).
10.
W.
Eisenmenger
, “
The mechanisms of stone fragmentation in ESWL
,”
Ultrasound Med. Biol.
27
,
683
693
(
2001
).
11.
H.
Kolsky
,
Stress Waves in Solids
(
Dover
,
New York
,
1963
).
12.
G.
Dahake
and
S. M.
Gracewski
, “
Related articles finite difference predictions of P-SV wave propagation inside submerged solids. I. Liquid-solid interface conditions
,”
J. Acoust. Soc. Am.
102
,
2125
2137
(
1997
).
13.
G.
Dahake
and
S. M.
Gracewski
, “
Finite difference predictions of P-SV wave propagation inside submerged solids. II. Effect of geometry
,”
J. Acoust. Soc. Am.
102
,
2138
2145
(
1997
).
14.
X.
Xi
and
P.
Zhong
, “
Dynamic photoelastic study of the transient stress field in solids during shock wave lithotripsy
,”
J. Acoust. Soc. Am.
109
,
1226
1239
(
2001
).
15.
J. A.
McAteer
,
J. C.
Williams
, Jr.
,
R. O.
Cleveland
,
J.
Van Cauwelaert
,
M. R.
Bailey
,
D. A.
Lifshitz
, and
A. P.
Evan
, “
Ultracal-30 gypsum artificial stones for lithotripsy research
,”
Urol. Res.
33
,
429
434
(
2005
).
16.
J. J.
Rassweiler
,
G. G.
Tailly
, and
C.
Chaussy
, “
Progress in lithotriptor technology
,”
EAU Update Series
3
,
17
36
(
2005
).
17.
W.
Eisenmenger
,
X. X.
Du
,
C.
Tang
,
S.
Zhao
,
Y.
Wang
,
F.
Rong
,
D.
Dai
,
M.
Guan
, and
A.
Qi
, “
The first clinical results of ‘wide focus and low pressure’ ESWL
,”
Ultrasound Med. Biol.
28
,
769
774
(
2002
).
18.
R. O.
Cleveland
and
O. A.
Sapozhnikov
, “
Modeling elastic waves in kidney stones with application to shock wave lithotripsy
,”
J. Acoust. Soc. Am.
118
,
2667
2676
(
2005
).
19.
L. A.
Crum
, “
Cavitation microjets as a contributory mechanism for renal calculi disintegration in ESWL
,”
J. Urol. (Baltimore)
140
,
1587
1590
(
1988
).
20.
C. C.
Church
, “
A theoretical study of cavitation generated by an extracorporeal shock wave lithotripter
,”
J. Acoust. Soc. Am.
86
,
215
227
(
1989
).
21.
M.
Delius
, “
Minimal static excess pressure minimises the effect of extracorporeal shock waves on cells and reduces it on gallstones
,”
Ultrasound Med. Biol.
23
,
611
617
(
1997
).
22.
N.
Vakil
and
E. C.
Everbach
, “
Transient acoustic cavitation in gallstone fragmentation: A study of gallstones fragmented in vivo
,”
Ultrasound Med. Biol.
19
,
331
342
(
1993
).
23.
M. R.
Bailey
, “
Control of acoustic cavitation with application to lithotripsy
,” Technical Report No. ARL-TR-97-1, Applied Research Laboratories, The University of Texas at Austin, Austin, TX and Defense Technical Information Center, Belvoir, VA,
1997
.
24.
X. F.
Xi
and
P.
Zhong
, “
Improvement of stone fragmentation during shock wave lithotripsy using a combined EH/PEAA shock wave generator—in vitro experiments
,”
Ultrasound Med. Biol.
26
,
457
467
(
2000
).
25.
R. O.
Cleveland
and
J.
van Cauweleart
, “
Fragmentation mechanisms of kidney stones in shock wave lithotripsy can be detected with microCT X-ray imaging
,”
Proceedings of the Joint German Convention on Acoustics and Congrès Francais d’Acoustique (CFA)
,
Strasbourg, France
,
2004
, edited by
D.
Cassereau
and
M.
Kob
, Vol.
2
, pp.
981
982
.
26.
Y. A.
Pishchalnikov
,
O. A.
Sapozhnikov
,
J. C.
Williams
, Jr.
,
A. P.
Evan
,
J. A.
McAteer
,
R. O.
Cleveland
,
T.
Colonius
,
M. R.
Bailey
, and
L. A.
Crum
, “
Cavitation bubble cluster activity in the breakage of kidney stones by lithotripter shock waves
,”
J. Endourol
17
,
435
446
(
2003
).
27.
J. R.
Blake
and
D. C.
Gibson
, “
Cavitation bubbles near boundaries
,”
Annu. Rev. Fluid Mech.
19
,
99
123
(
1987
).
28.
A.
Philipp
,
M.
Delius
,
C.
Scheffczyk
,
A.
Vogel
, and
W.
Lauterborn
, “
Interaction of lithotripter-generated shock waves with air bubbles
,”
J. Acoust. Soc. Am.
93
,
2496
2508
(
1993
).
29.
O. A.
Sapozhnikov
,
R. O.
Cleveland
,
M. R.
Bailey
, and
L. A.
Crum
, “
Numerical modeling of stresses generated by lithotripter shock wave in cylindrical kidney stone
,”
Third International Symposium on Therapeutic Ultrasound
,
Lyon, France
,
2004
, pp.
323
328
.
30.
F. R.
Gilmore
, “
The growth or collapse of a spherical bubble in a viscous compressible liquid
,”
California Institute of Technology
Report No. 26–4,
1952
, pp.
1
40
.
31.
M.
Tanguay
and
T.
Colonius
, “
Progress in modeling and simulation of shock wave lithotripsy (SWL)
,”
Fifth International Symposium on Cavitation (CAV2003)
, Osaka, Japan,
2003
, http://iridium.me.es.osaka-u.ac.jp/cav2003/index1.html: paper OS-2–1-010. Last viewed 1/19/2007.
32.
E. A.
Zabolotskaya
,
Yu. A.
Ilinskii
,
G. D.
Meegan
, and
M. F.
Hamilton
, “
Bubble interactions in clouds produced during shock wave lithotripsy
,”
Proc.-IEEE Ultrason. Symp.
2
,
890
893
(
2004
).
33.
R. J.
LeVeque
,
Finite Volume Methods for Hyperbolic Problems
(
Cambridge University Press
,
New York
,
2002
).
34.
F.
Ebrahimi
and
F.
Wang
, “
Fracture behaviour of urinary stones under compression
,”
J. Biomed. Mater. Res.
23
,
507
521
(
1989
).
35.
J.
Vireux
, “
P-SV wave propagation in heterogenous media: Velocity stress finite-difference method
,”
Geophysics
51
,
889
901
(
1986
).
36.
R. O.
Cleveland
,
M. R.
Bailey
,
N.
Fineberg
,
B.
Hartenbaum
,
M.
Lokhandwalla
,
J. A.
McAteer
, and
B.
Sturtevant
, “
Design and characterization of a research electrohydraulic lithotripter patterned after the Dornier HM3
,”
Rev. Sci. Instrum.
71
,
2514
2525
(
2000
).
37.
R. O.
Cleveland
,
D. A.
Lifshitz
,
B. A.
Connors
,
A. P.
Evan
,
L. R.
Willis
, and
L. A.
Crum
, “
In vivo pressure measurements of lithotripsy shock waves in pigs
,”
Ultrasound Med. Biol.
24
,
293
306
(
1998
).
38.
International Electrotechnical Committee, “
Ultrasonics—pressure pulse lithotripters—characteristics of fields
,” IEC Standard No. 61846,
1998
.
39.
A. A.
Griffith
, “
The phenomenon of rupture and flow in solids
,”
Philos. Trans. R. Soc. London, Ser. A
221
,
163
198
(
1920
).
40.
R. F.
Paterson
,
D. A.
Lifshitz
,
J. E.
Lingeman
,
A. P.
Evan
,
B. A.
Connors
,
J. C.
Williams
, Jr.
, and
J. A.
McAteer
, “
Stone fragmentation during shock wave lithotripsy is improved by slowing the shock wave rate: Studies with a new animal model
,”
J. Urol. (Baltimore)
168
,
2211
2215
(
2002
).
41.
O. A.
Sapozhnikov
,
V. A.
Khokhlova
,
M. R.
Bailey
,
J. C.
Williams
, Jr.
,
J. A.
McAteer
,
R. O.
Cleveland
, and
L. A.
Crum
, “
Effect of overpressure and pulse repetition frequency on shock wave lithotripsy
,”
J. Acoust. Soc. Am.
112
,
1183
1195
(
2002
).
42.
Y. A.
Pishchalnikov
,
O. A.
Sapozhnikov
,
M. R.
Bailey
,
I. V.
Pishchalnikova
,
J. C.
Williams
, Jr.
, and
J. A.
McAteer
, “
Cavitation selectively reduces the negative-pressure phase of lithotripter shock pulses
,”
ARLO
6
,
280
286
(
2005
).
43.
S. L.
Zhu
,
F. H.
Cocks
,
G. M.
Preminger
, and
P.
Zhong
, “
The role of stress waves and cavitation in stone comminution in shock wave lithotripsy
,”
Ultrasound Med. Biol.
28
,
661
671
(
2002
).
You do not currently have access to this content.