Originally developed to estimate the power gain of the cochlear amplifier, so-called “Allen–Fahey” and related experiments have proved invaluable for probing the mechanisms of wave generation and propagation within the cochlea. The experimental protocol requires simultaneous measurement of intracochlear distortion products (DPs) and ear-canal otoacoustic emissions (DPOAEs) under tightly controlled conditions. To calibrate the intracochlear response to the DP, Allen–Fahey experiments traditionally employ invasive procedures such as recording from auditory-nerve fibers or measuring basilar-membrane velocity. This paper describes an alternative method that allows the intracochlear distortion source to be calibrated noninvasively. In addition to the standard pair of primary tones used to generate the principal DP, the noninvasive method employs a third, fixed tone to create a secondary DPOAE whose amplitude and phase provide a sensitive assay of the intracochlear value of the principal DP near its characteristic place. The method is used to perform noninvasive Allen–Fahey experiments in cat and shown to yield results in quantitative agreement with the original, auditory-nerve-based paradigm performed in the same animal. Data obtained using a suppression-compensated variation of the noninvasive method demonstrate that neither traveling-wave amplification nor two-tone suppression constitutes the controlling influence in DPOAE generation at close frequency ratios. Rather, the dominant factor governing the emission magnitude appears to be the variable directionality of the waves radiated by the distortion-source region, which acts as a distortion beamformer tuned by the primary frequency ratio.

1.
Allen
,
J. B.
, and
Fahey
,
P. F.
(
1992
). “
Using acoustic distortion products to measure the cochlear amplifier gain on the basilar membrane
,”
J. Acoust. Soc. Am.
92
,
178
188
.
2.
Allen
,
J. B.
, and
Fahey
,
P. F.
(
1993
). “
A second cochlear-frequency map that correlates distortion product and neural tuning measurements
,”
J. Acoust. Soc. Am.
94
,
809
816
.
3.
Brown
,
A. M.
,
Gaskill
,
S. A.
, and
Williams
,
D. M.
(
1992
). “
Mechanical filtering of sound in the inner ear
,”
Proc. R. Soc. London, Ser. B
250
,
29
34
.
4.
Cody
,
A. R.
(
1992
). “
Acoustic lesions in the mammalian cochlea: Implications for the spatial distribution of the ‘active proces’
,”
Hear. Res.
62
,
166
172
.
5.
de Boer
,
E.
(
1995
). “
The ‘inverse problem’ solved for a three-dimensional model of the cochlea. II. Application to experimental data sets
,”
J. Acoust. Soc. Am.
98
,
904
910
.
6.
de Boer
,
E.
, and
Nuttall
,
A. L.
(
2001
). “
Power gain of the cochlear amplifier
,” in
Physiological and Psychological Bases of Auditory Function
, edited by
D. J.
Breebaart
,
A. J. M.
Houtsma
,
A.
Kohlrausch
,
V. F.
Prijs
, and
R.
Schoonhoven
(
Shaker
, Maastricht), pp.
1
7
.
7.
de Boer
,
E.
,
Nuttall
,
A. L.
,
Hu
,
N.
,
Zou
,
Y.
, and
Zheng
,
J.
(
2005
). “
The Allen–Fahey experiment extended
,”
J. Acoust. Soc. Am.
107
,
1260
1266
.
8.
Dong
,
W.
, and
Olson
,
E. S.
(
2005
). “
Two-tone distortion in intracochlear pressure
,”
J. Acoust. Soc. Am.
117
,
2999
3015
.
9.
Evans
,
E. F.
(
1975
). “
Cochlear nerve and cochlear nucleus
,” in
Handbook of Sensory Physiology
, edited by
W. D.
Keidel
and
W. D.
Neff
(
Springer
, Berlin), Vol.
V/2
, pp.
1
108
.
10.
Fahey
,
P. F.
, and
Allen
,
J. B.
(
1985
). “
Nonlinear phenomena as observed in the ear canal and at the auditory nerve
,”
J. Acoust. Soc. Am.
77
,
599
612
.
11.
Fahey
,
P. F.
,
Stagner
,
B. B.
,
Lonsbury-Martin
,
B. L.
, and
Martin
,
G. K.
(
2000
). “
Nonlinear interactions that could explain distortion product interference response areas
,”
J. Acoust. Soc. Am.
108
,
1786
1802
.
12.
Fahey
,
P. F.
,
Stagner
,
B. B.
, and
Martin
,
G. K.
(
2006
). “
Mechanism for bandpass frequency characteristic in distortion product otoacoustic emission generation
,”
J. Acoust. Soc. Am.
119
,
991
996
.
13.
Goldstein
,
J. L.
,
Buschsbaum
,
G.
, and
Furst
,
M.
(
1978
). “
Compatibility between psychophysical and physiological measurements of aural combination tones
,”
J. Acoust. Soc. Am.
63
,
474
485
.
14.
Goldstein
,
J. L.
, and
Kiang
,
N. Y. S.
(
1968
). “
Neural correlates of the aural combination tone 2f1f2
,”
Proc. IEEE
56
,
981
991
.
15.
Guinan
,
J. J.
, and
Gifford
,
M. L.
(
1988
). “
Effects of electrical stimulation of efferent olivocochlear neurons on cat auditory-nerve fibers. I. Rate versus sound level functions
,”
Hear. Res.
33
,
97
114
.
16.
Guinan
,
J. J.
, and
Stanković
,
K. M.
(
1996
). “
Medial efferent inhibition produces the largest equivalent attenuations at moderate to high sound levels in cat auditory-nerve fibers
,”
J. Acoust. Soc. Am.
100
,
1680
1690
.
17.
Kalluri
,
R.
, and
Shera
,
C. A.
(
2001
). “
Distortion-product source unmixing: A test of the two-mechanism model for DPOAE generation
,”
J. Acoust. Soc. Am.
109
,
622
637
.
18.
Kanis
,
L. J.
, and
de Boer
,
E.
(
1993
). “
The emperor’s new clothes: DP emissions in a locally-active nonlinear model of the cochlea
,” in
Biophysics of Hair Cell Sensory Systems
, edited by
H.
Duifhuis
,
J. W.
Horst
,
P.
van Dijk
, and
S. M.
van Netten
(
World Scientific
, Singapore), pp.
304
314
.
19.
Kanis
,
L. J.
, and
de Boer
,
E.
(
1997
). “
Frequency dependence of acoustic distortion products in a locally active model of the cochlea
,”
J. Acoust. Soc. Am.
101
,
1527
1531
.
20.
Kemp
,
D. T.
, and
Knight
,
R.
(
1999
). “
Virtual DP reflector explains DPOAE ‘wave’ and ‘place’ fixed dichotomy
,”
Assoc. Res Otolaryngol. Abs.
22
,
396
.
21.
Knight
,
R. D.
, and
Kemp
,
D. T.
(
2000
). “
Indications of different distortion product otoacoustic emission mechanisms from a detailed f1,f2 area study
,”
J. Acoust. Soc. Am.
107
,
457
473
.
22.
Liberman
,
M. C.
(
1978
). “
Auditory-nerve response from cats raised in a low-noise chamber
,”
J. Acoust. Soc. Am.
63
,
442
455
.
23.
Liberman
,
M. C.
(
1982
). “
The cochlear frequency map for the cat: Labeling auditory-nerve fibers of known characteristic frequency
,”
J. Acoust. Soc. Am.
72
,
1441
1449
.
24.
Press
,
W. H.
,
Teukolsky
,
S. A.
,
Vetterling
,
W. T.
, and
Flannery
,
B. P.
(
1992
).
Numerical Recipes in C: The Art of Scientific Computing
(
Cambridge University Press
, Cambridge).
25.
Ren
,
T.
, and
Nuttall
,
A. L.
(
2006
). “
Cochlear compression wave: An implication of the Allen–Fahey experiment
,”
J. Acoust. Soc. Am.
119
,
1940
1942
.
26.
Schroeder
,
M. R.
(
1975
). “
Amplitude behavior of the cubic difference tone
,”
J. Acoust. Soc. Am.
58
,
728
732
.
27.
Shera
,
C. A.
(
2003
). “
Wave interference in the generation of reflection- and distortion-source emissions
,” in
Biophysics of the Cochlea: From Molecules to Models
, edited by
A. W.
Gummer
(
World Scientific
, Singapore), pp.
439
453
.
28.
Shera
,
C. A.
, and
Guinan
,
J. J.
(
1997
). “
Measuring cochlear amplification and nonlinearity using distortion-product otoacoustic emissions as a calibrated intracochlear sound source
,”
Assoc. Res. Otolaryngol. Abs.
20
,
51
.
29.
Shera
,
C. A.
, and
Guinan
,
J. J.
(
1999
). “
Evoked otoacoustic emissions arise by two fundamentally different mechanisms: A taxonomy for mammalian OAEs
,”
J. Acoust. Soc. Am.
105
,
782
798
.
30.
Shera
,
C. A.
, and
Guinan
,
J. J.
(
2007
). “
Mechanisms of mammalian otoacoustic emission
,” in Active Processes and Otoacoustic Emissions, edited by
G. A.
Manley
,
B. L.
Lonsbury-Martin
,
A. N.
Popper
, and
R. R.
Fay
, in press (
Springer
, New York).
31.
Shera
,
C. A.
,
Tubis
,
A.
, and
Talmadge
,
C. L.
(
2005
). “
Coherent reflection in a two-dimensional cochlea: Short-wave versus long-wave scattering in the generation of reflection-source otoacoustic emissions
,”
J. Acoust. Soc. Am.
118
,
287
313
.
32.
Shera
,
C. A.
,
Tubis
,
A.
,
Talmadge
,
C. L.
,
de Boer
,
E.
,
Fahey
,
P. F.
, and
Guinan
,
J. J.
(
2007
). “
Allen–Fahey and related experiments support the predominance of cochlear slow-wave otoacoustic emissions
,”
J. Acoust. Soc. Am.
(in press).
33.
Shera
,
C. A.
, and
Zweig
,
G.
(
1992
). “
Analyzing reverse middle-ear transmission: Noninvasive Gedankenexperiments
,”
J. Acoust. Soc. Am.
92
,
1371
1381
.
34.
Talmadge
,
C. L.
,
Tubis
,
A.
,
Long
,
G. R.
, and
Piskorski
,
P.
(
1998
). “
Modeling otoacoustic emission and hearing threshold fine structure
,”
J. Acoust. Soc. Am.
104
,
1517
1543
.
35.
van der Heijden
,
M.
, and
Joris
,
P. X.
(
2003
). “
Cochlear phase and amplitude retrieved from the auditory nerve at arbitrary frequencies
,”
J. Neurosci.
23
,
9194
9198
.
36.
van Hengel
,
P. W. J.
(
1996
). “
Emissions from cochlear modelling
,” Ph.D. thesis,
Rijksuniversiteit Groningen
.
37.
Ver
,
I. L.
,
Brown
,
R. M.
, and
Kiang
,
N. Y. S.
(
1975
). “
Low-noise chambers for auditory research
,”
J. Acoust. Soc. Am.
58
,
392
398
.
38.
Whitehead
,
M. L.
,
Lonsbury-Martin
,
B. L.
, and
Martin
,
G. K.
(
1993
). “
Measurement of 2f1f2 excitation at the distortion-frequency place in the cochlea using ear-canal distortion products
,”
Assoc. Res. Otolaryngol. Abs.
16
,
395
.
39.
Zweig
,
G.
(
1976
). “
Basilar membrane motion
,” in
Cold Spring Harbor Symposia on Quantitative Biology
(
Cold Spring Harbor Laboratory Press
, Cold Spring Harbor, NY), Vol.
XL
, pp.
619
633
.
40.
Zweig
,
G.
(
1991
). “
Finding the impedance of the organ of Corti
,”
J. Acoust. Soc. Am.
89
,
1229
1254
.
You do not currently have access to this content.