A new optical characterization of the behavior of single ultrasound contrast bubbles is presented. The method consists of insonifying individual bubbles several times successively sweeping the applied frequency, and to record movies of the bubble response up to 25 million frames/s with an ultrahigh speed camera operated in a segmented mode. The method, termed microbubble spectroscopy, enables to reconstruct a resonance curve in a single run. The data is analyzed through a linearized model for coated bubbles. The results confirm the significant influence of the shell on the bubble dynamics: shell elasticity increases the resonance frequency by about 50%, and shell viscosity is responsible for about 70% of the total damping. The obtained value for shell elasticity is in quantative agreement with previously reported values. The shell viscosity increases significantly with the radius, revealing a new nonlinear behavior of the phospholipid coating.

1.
T.
Szabo
,
Diagnostic Ultrasound Imaging: Inside Out
(
Academic
, New York,
2004
).
2.
N.
de Jong
, “
Acoustic properties of ultrasound contrast agents
,” Ph.D thesis,
Erasmus University Rotterdam
(
1993
).
3.
L.
Hoff
,
Acoustic Characterization of Contrast Agents for Medical Ultrasound Imaging
(
Kluwer
, Dordrecht,
2001
).
4.
A. L.
Klibanov
, “
Ultrasound contrast agents: Development of the field and current status
,”
Top. Curr. Chem.
222
,
73
106
(
2002
).
5.
P. J. A.
Frinking
and
N.
de Jong
, “
Acoustic modeling of shell-encapsulated gas bubbles
,”
Ultrasound Med. Biol.
24
(
4
),
523
533
(
1998
).
6.
P. J. A.
Frinking
,
N.
de Jong
, and
E. I.
Céspedes
, “
Scattering properties of encapsulated gas bubbles at high ultrasound pressures
,”
J. Acoust. Soc. Am.
105
(
3
),
1989
1996
(
1999
).
7.
W. T.
Shi
and
F.
Forsberg
, “
Ultrasonic characterization of the nonlinear properties of contrast microbubbles
,”
Ultrasound Med. Biol.
26
,
93
104
(
2000
).
8.
J. M.
Gorce
,
M.
Arditi
, and
M.
Schneider
, “
Influence of bubble size distribution on the echogenicity of ultrasound contrast agents. A study of SonoVue
,”
Invest. Radiol.
35
(
11
),
661
671
(
2000
).
9.
S. H.
Bloch
,
R. E.
Short
,
K. W.
Ferrara
, and
E. R.
Wisner
, “
The effect of size on the acoustic response of polymer-shelled contrast agents
,”
Ultrasound Med. Biol.
31
,
439
444
(
2005
).
10.
J. E.
Chomas
,
P. A.
Dayton
,
D.
May
,
J.
Allen
,
A. L.
Klibanov
, and
K. W.
Ferrara
, “
Optical observation of contrast agent destruction
,”
Appl. Phys. Lett.
77
,
1056
1058
(
2000
).
11.
N.
de Jong
,
P. J. A.
Frinking
,
A.
Bouakaz
,
M.
Goorden
,
T.
Schourmans
,
J. P.
Xu
, and
F.
Mastik
, “
Optical imaging of contrast agent microbubbles in an ultrasound field with a 100MHz camera
,”
Ultrasound Med. Biol.
26
,
487
492
(
2000
).
12.
Y.
Sun
,
D. E.
Kruse
,
P. A.
Dayton
, and
K. W.
Ferrara
, “
High-frequency dynamics of ultrasound contrast agents
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
52
,
1981
1991
(
2005
).
13.
K. E.
Morgan
,
J. S.
Allen
,
P. A.
Dayton
,
J. E.
Chomas
,
A. L.
Klibanov
, and
K. W.
Ferrara
, “
Experimental and theoretical evaluation of microbubble behavior: Effect of transmitted phase and bubble size
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
47
,
1494
1508
(
2000
).
14.
P. A.
Dayton
,
J. S.
Allen
, and
K. W.
Ferrara
, “
The magnitude of radiation force on ultrasound contrast agents
,”
J. Acoust. Soc. Am.
112
,
2183
2192
(
2002
).
15.
C. T.
Chin
,
C.
Lancée
,
J.
Borsboom
,
F.
Mastik
,
M. E.
Frijlink
,
N.
de Jong
,
M.
Versluis
, and
D.
Lohse
, “
Brandaris 128: A digital 25 million frames per second camera with 128 highly sensitive frames
,”
Rev. Sci. Instrum.
74
(
l2
),
5026
5034
(
2003
).
16.
T. G.
Leighton
,
The Acoustic Bubble
(
Academic
, London,
1994
).
17.
S.
Hilgenfeldt
,
D.
Lohse
, and
M.
Zomack
, “
Response of bubbles to diagnostic ultrasound:A unifying theoretical approach
,”
Eur. Phys. J. B
4
,
247
255
(
1998
).
18.
P.
Marmottant
,
S. M.
van der Meer
,
M.
Emmer
,
M.
Versluis
,
N.
de Jong
,
S.
Hilgenfeldt
, and
D.
Lohse
, “
A model for large amplitude oscillations of coated bubbles accounting for buckling and rupture
,”
J. Acoust. Soc. Am.
118
(
6
),
3499
3505
(
2005
).
19.
M. S.
Plesset
and
A.
Prosperetti
, “
Bubble dynamics and cavitation
,”
Annu. Rev. Fluid Mech.
9
,
145
185
(
1977
).
20.
C. E.
Brennen
,
Cavitation and Bubble Dynamics
(
Oxford University Press
, Oxford,
1995
).
21.
M.
Brenner
,
S.
Hilgenfeldt
, and
D.
Lohse
, “
Single bubble sonoluminescence
,”
Rev. Mod. Phys.
74
(
2
),
425
484
(
2002
).
22.
N.
de Jong
,
R.
Cornet
, and
C. T.
Lancée
, “
Higher harmonics of vibrating gas-filled microspheres Part one: Simulations
,”
Ultrasonics
32
(
6
),
447
453
(
1994
).
23.
C. C.
Church
, “
The effects of an elastic solid surface layer on the radial pulsarions of gas bubble
,”
J. Acoust. Soc. Am.
97
,
1510
1521
(
1995
).
24.
L.
Hoff
,
P. C.
Sontum
, and
J. M.
Havem
, “
Oscillations of polymeric microbubbles: Effect of the encapsulating shell
,”
J. Acoust. Soc. Am.
107
,
2272
2280
(
2000
).
25.
D. B.
Khismatullin
and
A.
Nadim
, “
Radial oscillations of encapsulated microbubbles in viscoelastic liquids
,”
Phys. Fluids
14
,
3534
(
2002
).
26.
K.
Sarkar
,
W. T.
Shi
,
D.
Chatterjee
, and
F.
Forsberg
, “
Characterization of ultrasound contrast microbubbles using in vitro experiments and viscous and viscoelastic interface models for encapsulation
,”
J. Acoust. Soc. Am.
118
(
1
),
539
550
(
2005
).
27.
We thank Charles C. Church for pointing out a typo in Ref. 18. The dilatational viscosity κs is expressed in units of kg/s.
28.
M.
Minnaert
, “
On musical air-bubbles and the sounds of running water
,”
Philos. Mag.
16
,
235
248
(
1933
).
29.
M.
Sonka
,
V.
Hlavac
, and
R.
Boyle
,
Image Processing, Analysis, and Machine Vision
, 2nd ed. (
PWS
, Pacific Grove, CA,
1999
).
30.
A.
Prosperetti
, “
Thermal effects and damping mechanisms in the forced radial oscillations of gas bubbles in liquids
,”
J. Acoust. Soc. Am.
61
,
17
27
(
1977
).
31.
D. B.
Khismatullin
, “
Resonance frequency of microbubbles: Effect of viscosity
,”
J. Acoust. Soc. Am.
116
,
1463
1473
(
2004
).
32.
C.
Lemaire
and
D.
Langevin
, “
Longitudinal surface waves at liquid interfaces. Measurement of monolayer viscoelasticity
,”
Colloids Surf.
65
,
101
112
(
1992
).
33.
F.
Monroy
,
F.
Ortega
, and
R. G.
Rubio
, “
Dilatational rheology of insoluble polymer monolayers: Poly(vinylacetate)
,”
Phys. Rev. E
58
(
6
),
7629
7641
(
1998
).
34.
N.
de Jong
,
C. T.
Chin
,
A.
Bouakaz
,
F.
Mastik
,
D.
Lohse
, and
M.
Versluis
, “
‘Compression-only’ behavior of phospholipid-coated contrast bubbles
,”
Ultrasound Med. Biol.
(in press).
35.
C. F.
Bohren
and
D. R.
Huffman
,
Absorption and Scattering of Light by Small Particles
(
Wiley
, New York
l983
).
36.
W.
Lauterborn
, “
Nonlinear oscillations of gas bubbles
,”
J. Acoust. Soc. Am.
59
(
2
),
283
293
(
1976
).
37.
A.
Prosperetti
, “
Bubble phenomena in sound fields: Part two
,”
Ultrasonics
22
,
115
124
(
1984
).
38.
E. M. B.
Payne
,
S.
Illesinghe
,
A.
Ooi
, and
R.
Manasseh
, “
Symmetric mode resonance of bubbles attached to a rigid boundary
,”
J. Acoust. Soc. Am.
118
,
2841
2849
(
2005
).
39.
M.
Strasberg
, “
The pulsation frequency of nonspherical gas bubbles in liquids
,”
J. Acoust. Soc. Am.
25
,
536
537
(
1953
).
40.
J. S.
Allen
,
D. E.
Kruse
,
P. A.
Dayton
, and
K. W.
Ferrara
, “
Effect of coupled oscillations on microbubble behavior
,”
J. Acoust. Soc. Am.
114
(
3
),
1678
1690
(
2003
).
41.
M.
Emmer
,
A.
van Wamel
,
D. E.
Goertz
, and
N.
de Jong
, “
The onset of microbubble vibration
,”
Ultrasound Med. Biol.
(in press).
You do not currently have access to this content.