An experimental setup and human vocal folds replica able to produce self-sustained oscillations are presented. The aim of the setup is to assess the relevance and the accuracy of theoretical vocal folds models. The applied reduced mechanical models are a variation of the classical two-mass model, and a simplification inspired on the delayed mass model for which the coupling between the masses is expressed as a fixed time delay. The airflow is described as a laminar flow with flow separation. The influence of a downstream resonator is taken into account. The oscillation pressure threshold and fundamental frequency are predicted by applying a stability analysis to the mechanical models. The measured frequency response of the mechanical replica together with the initial (rest) area allows us to determine the model parameters (spring stiffness, damping, geometry, masses). Validation of theoretical model predictions to experimental data shows the relevance of low-order models in gaining a qualitative understanding of phonation. However, quantitative discrepancies remain large due to an inaccurate estimation of the model parameters and the crudeness in either flow or mechanical model description. As an illustration it is shown that significant improvements can be made by accounting for viscous flow effects.

1.
Alipour
,
F.
, and
Scherer
,
R. C.
(
2001
). “
Effects of oscillation of mechanical hemi-larynx model on mean transglottal pressures and flows
,”
J. Acoust. Soc. Am.
110
,
1562
1569
.
2.
Avanzini
,
F.
,
Alku
,
P.
, and
Karjalainen
,
M.
(
2001
). “
One-delayed-mass Model for Efficient Synthesis of Glottal Flow
,”
Proc. Eurospeech Conf.
,
Aalborg
, pp.
51
54
.
3.
Baken
,
R. J.
(
1987
).
Clinical Measurement of Speech and Voice
(
Allyn and Bacon
),
4.
Barney
,
A.
,
Shadle
,
C. H.
, and
Davies
,
P. O. A. L.
(
1999
). “
Fluid flow in a dynamic mechanical model of the vocal folds and tract. I. Measurements and theory
,”
J. Acoust. Soc. Am.
105
,
444
455
.
5.
Berry
,
D. A.
, and
Titze
,
I. R.
(
1996
). “
Normal modes in a continuum model of vocal fold tissues
,”
J. Acoust. Soc. Am.
100
,
3345
3354
.
6.
Berry
,
D. A.
,
Herzel
,
H.
,
Titze
,
I. R.
, and
Krischer
,
K.
(
1994
). “
Interpretation of biomechanical simulations of normal and chaotic vocal fold oscillation with empirical eigenfunctions
,”
J. Acoust. Soc. Am.
95
,
3595
3604
.
7.
Chan
,
R. W.
,
Titze
,
I. R.
, and
Titze
,
M. R.
(
1997
). “
Further studies of phonation threshold pressure in a physical model of vocal fold mucosa
,”
J. Acoust. Soc. Am.
101
,
3722
3727
.
8.
Childers
,
D. G.
, and
Wong
,
C.-F.
(
1994
). “
Measuring and modeling vocal source-tract interaction
,”
IEEE Trans. Biomed. Eng.
41
,
663
671
.
9.
Cranen
,
B.
(
1987
). “
The Acoustic Impedance of the Glottis. Measurement and Modelling
” (
Sneldruk Enschede
, The Netherlands).
10.
Cullen
,
J. S.
,
Gilbert
,
J.
, and
Campbell
,
D. M.
(
2000
). “
Brass instruments: linear stability analysis and experiments with an artificial mouth
,”
Acta Acust.
86
,
704
24
.
11.
Deverge
,
M.
,
Pelorson
,
X.
,
Vilain
,
C.
,
Lagrée
,
P.-Y.
,
Chentouf
,
F.
,
Willems
,
J.
, and
Hirschberg
,
A.
(
2003
). “
Influence of the collision on the flow through in vitro rigid models of the vocal folds
,”
J. Acoust. Soc. Am.
114
,
3354
3362
.
12.
De Vries
,
M. P.
,
Schutte
,
H. K.
, and
Verkerke
,
G. J.
(
1999
). “
Determination of parameters for lumped parameter models of the vocal folds using a finite-element approach
,”
J. Acoust. Soc. Am.
106
,
3620
3628
.
13.
Drioli
,
C.
(
2005
). “
A flow waveform-matched low-dimensional glottal model based on physical knowledge
,”
J. Acoust. Soc. Am.
117
,
3184
3195
.
14.
Fitch
,
J. L.
, and
Holbrook
,
A.
(
1970
). “
Model fundamental frequency of young adults
,”
Arch. Otolaryngol.
92
,
379
382
.
15.
Flanagan
,
J. L.
(
1972
). “
Voices of men and machines
,”
J. Acoust. Soc. Am.
51
,
1375
1387
.
16.
Flanagan
,
J. L.
, and
Landgraf
,
L.
(
1968
). “
Self-oscillating source for vocal tract synthesizers
,”
IEEE Trans. Audio Electroacoust.
AU-16
,
57
64
.
17.
Flanagan
,
J. L.
,
Ishizaka
,
K.
, and
Shipley
,
K. L.
(
1975
). “
Synthesis of speech from a dynamic model of the vocal cords and vocal tract
,”
Bell Syst. Tech. J.
54
,
485
506
.
18.
Gauffin
,
J.
, and
Liljencrants
,
J.
(
1988
). “
Modeling the Air Flow in the Glottis
,” Ann. Bull. RILP
22
,
41
52
.
19.
Gauffin
,
J.
,
Binh
,
N.
,
Ananthapadmanabha
,
T. V.
, and
Fant
,
G.
(
1983
). “
Glottal geometry and volume velocity waveform
,” in
Vocal Fold Physiology: Contemporary Research and Clinical Issues
, edited by
D.
Bless
and
J.
Abbs
(
College-Hill
,
San Diego CA
), pp.
194
201
.
20.
Gilbert
,
J.
,
Ponthus
,
S.
, and
Petiot
,
J. F.
(
1998
). “
Artificial buzzing lips and brass instruments: experimental results
,”
J. Acoust. Soc. Am.
104
,
1627
1632
.
21.
Herzel
,
H.
,
Berry
,
D.
,
Titze
,
I.
, and
Saleh
,
M.
(
1994
). “
Analysis of vocal disorders with methods from non linear dynamics
,”
J. Speech Hear. Res.
37
,
1008
1019
.
22.
Hirano
,
M.
,
Kurita
,
S.
, and
Nakashima
,
T.
(
1983
). “
Growth, development and aging of human vocal folds
,” in
Vocal Fold Physiology: Contemporary Research and Clinical Issues
, edited by
D. M.
Bless
and
J. M.
Abbs
, (
College-Hill
,
San Diego, CA
), pp.
22
43
.
23.
Hofmans
,
G. C. J.
,
Groot
,
G.
,
Ranucci
,
M.
,
Graziani
,
G.
, and
Hirschberg
,
A.
(
2003
). “
Unsteady flow through in vitro models of the glottis
,”
J. Acoust. Soc. Am.
113
,
1658
1675
.
24.
Hollien
,
H.
, and
Moore
,
P.
(
1960
). “
Measurements of the vocal folds during changes in pitch
,”
J. Speech Hear. Res.
3
,
157
165
.
25.
Hunter
,
E. J.
,
Titze
,
I. R.
, and
Alipour
,
F.
(
2004
). “
A three-dimensional model of vocal fold abduction/adduction
,”
J. Acoust. Soc. Am.
115
,
1747
1757
.
26.
Ishizaka
,
K.
, and
Flanagan
,
J. L.
(
1972
). “
Synthesis of Voiced Sounds From a Two-Mass Model of the Vocal Cords
,”
Bell Syst. Tech. J.
51
,
1233
1267
.
27.
Kaneko
,
T.
,
Komatsu
,
K.
,
Suzuki
,
H.
,
Kanesaka
,
T.
,
Masuda
,
T.
,
Numata
,
T.
, and
Naito
,
J.
(
1983
). “
Mechanical properties of the human vocal fold-Resonance characteristics in living humans and in excised larynges
,” in
Vocal Fold Physiology: Biomechanics, Acoustics and Phonatory Control
, edited by
I. R.
Titze
and
R. C.
Scherer
(
Denver Center for the Performing Arts
,
Denver, CO
), pp.
304
317
.
28.
Kiritani
,
S.
,
Imagawa
,
H.
,
Imaizumi
,
S.
, and
Saito
,
S.
(
1987
). “
Measurement of air flow pattern through a mechanically driven oscillating slit: a preliminary report
,” Ann. Bull. RILP
21
,
1
8
.
29.
Kob
,
M.
(
2002
). “
Physical modeling of the singing voice
,” Ph.D. thesis, Logos-Verl, Berlin.
30.
Lous
,
N. J. C.
,
Hofmans
,
G. C. J.
,
Veldhuis
,
N. J.
, and
Hirschberg
,
A.
(
1998
). “
A symetrical two-mass model vocal-fold model coupled to vocal tract and trachea, with application to prothesis design
,”
Acustica
84
,
1135
1150
.
31.
Lucero
,
J. C.
(
2005
). “
Bifurcations and limit cycles in a model for a vocal fold oscillator
,”
Commun. Math. Sci.
3
,
517
529
.
32.
Lucero
,
J. C.
(
1999
). “
A theoretical study of the hysteresis phenomenon at vocal fold oscillation onset-offset
,”
J. Acoust. Soc. Am.
105
,
423
431
.
33.
Lucero
,
J. C.
(
1998
). “
Optimal glottal configuration for ease of phonation
,”
J. Voice
12
,
151
158
.
34.
Lucero
,
J. C.
and
Koenig
,
L. L.
(
2005
). “
Phonation thresholds as a function of laryngeal size in a two-mass model of the vocal folds
,”
J. Acoust. Soc. Am.
118
,
2798
2801
.
35.
Mantha
,
S.
,
Mongeau
,
L.
, and
Siegmund
,
T.
(
2005
). “
Dynamic digital image correlation of a dynamic physical model of the vocal folds
,”
4th International Workshop MAVEBA 2005
, pp.
125
128
.
36.
Mc Glone
,
R. E.
and
Shipp
,
T.
(
1971
). “
Some physiological correlates of vocal fry phonation
,”
J. Speech Hear. Res.
14
,
769
775
.
37.
Pelorson
,
X.
,
Hirschberg
,
A.
,
Wijnands
,
A. P. J.
, and
Baillet
,
H.
(
1995
). “
Description of the flow through in-vitro models of the glottis during phonation
,”
Acta Acust.
3
,
191
202
.
38.
Pelorson
,
X.
,
Hirschberg
,
A.
,
Van Hassel
,
R. R.
,
Wijnands
,
A. P.J.
, and
Auregan
,
Y.
(
1994
). “
Theoretical and experimental study of quasisteady-flow separation within the glottis during the phonation. Application to a modified two-mass model
,”
J. Acoust. Soc. Am.
96
,
3416
3431
.
39.
Pierce
,
A. D.
(
1991
).
Acoustics: An Introduction to its Physical Principles and Applications
, 1989 ed. (Acoustical Society of America, Melville, NY).
40.
Rothenberg
,
M.
(
1980
). “
Acoustic interaction between the glottal source and the vocal tract
,” in
Vocal Fold Physiology
, edited by
K. N.
Stevens
and
M.
Hirano
(
Univ. of Tokyo
,
Tokyo
), pp.
305
328
.
41.
Ruty
,
N.
,
Van Hirtum
,
A.
,
Pelorson
,
X.
,
Lopez
,
I.
, and
Hirschberg
,
A.
(
2005
). “
A mechanical experimental setup to simulate vocal folds vibrations. Preliminary results
,” ZAS papers in Linguistics, pp.
162
175
http://www.zas.gwz-berlin.de/papers/zaspil/articles/zp40/ruty_final2.pdf⟩.
42.
Saito
,
S.
,
Fukuda
,
K.
,
Suzuki
,
H.
,
Komatsu
,
K.
,
Kanesaka
,
T.
, and
Kobayashi
,
N.
(
1981
). “
X-ray stroboscopy
,” in
Vocal Fold Physiology
, edited by
K. N.
Stevens
and
M.
Hirano
(
Univ. of Tokyo
,
Tokyo
), pp.
95
106
.
43.
Scherer
,
R. C.
and
Guo
,
R. C.
(
1990
). “
Effect of vocal fold radii in pressure distributions in the glottis
,”
J. Acoust. Soc. Am.
88
(Suppl. 1),
S150
.
44.
Scherer
,
R. C.
,
Titze
,
I. R.
, and
Curtis
,
J. F.
(
1983
). “
Pressure-flow relationships in two models of the larynx having rectangular glottal shapes
,”
J. Acoust. Soc. Am.
73
,
668
676
.
45.
Scherer
,
R. C.
,
Shinwari
,
D.
,
De Witt
,
K. J.
,
Zhang
,
C.
,
Kucinschi
,
B. R.
, and
Afjeh
,
A. A.
(
2001
). “
Intraglottal pressure profiles for a symmetric and oblique glottis with a divergence angle of 10 degrees
,”
J. Acoust. Soc. Am.
109
,
1616
1630
.
46.
Story
,
B. H.
and
Titze
,
I. R.
(
1995
). “
Voice simulation with body cover model of the vocal folds
,”
J. Acoust. Soc. Am.
97
,
1249
1260
.
47.
Svec
,
J. G.
,
Horacek
,
J.
,
Sram
,
F.
, and
Vesely
,
J.
(
2000
). “
Resonance properties of the vocal folds: In vivo laryngoscopic investigation of the externally excited laryngeal vibrations
,”
J. Acoust. Soc. Am.
108
,
1397
1407
.
48.
Thomson
,
S. L.
,
Mongeau
,
L.
, and
Frankel
,
S. H.
(
2005
). “
Aerodynamic transfer to the vocal folds
,”
J. Acoust. Soc. Am.
118
,
1689
1700
.
49.
Titze
,
I. R.
(
1988
). “
The physics of small-amplitude oscillation of the vocal folds
,”
J. Acoust. Soc. Am.
83
,
1536
1552
.
50.
Titze
,
I. R.
,
Schmidt
,
S. S.
, and
Titze
,
M. R.
(
1995
). “
Phonation threshold pressure in a physical model of the vocal fold mucosa
,”
J. Acoust. Soc. Am.
97
,
3080
3084
.
51.
Vampola
,
T.
,
Horáček
,
J.
,
Veselý
,
J.
,
Vokřál
(
2005
). “
Modelling of influence of velopharyngeal insufficiency on phonation of vowel /a/
,”
4th International Workshop MAVEBA 2005
, pp.
43
46
.
52.
Van den Berg
,
Jw.
,
Zantema
,
J. T.
, and
Doornenbal
,
P.
(
1957
). “
On the air resistance and the Bernoulli effect of the human larynx
,”
J. Acoust. Soc. Am.
29
,
625
631
.
53.
Vilain
,
C. E.
,
Pelorson
,
X.
,
Hirschberg
,
A.
,
Le Marrec
,
L.
,
Op’t Root
,
W.
, and
Willems
,
J.
(
2003
). “
Contribution to the physical modeling of the lips. Influence of the mechanical boundary conditions
,”
Acta. Acust. Acust.
89
,
882
887
.
54.
Wong
,
D.
,
Ito
,
M. R.
,
Cox
,
N. B.
, and
Titze
,
I. R.
(
1991
). “
Observation of perturbations in a lumped-element model of the vocal folds with application to some pathological cases
,”
J. Acoust. Soc. Am.
89
,
383
394
.
You do not currently have access to this content.