Modal behavior in landmines has recently become a topic of interest for acoustic landmine detection. It is well known that landmines exhibit mechanical resonance behavior that enhances the soil velocity over a buried landmine. Recent experimental work by Zagrai et al. [A. Zagrai, D. Donskoy, and A. Ekimov, J. Acoust. Soc. Am.118 (6), 36193628 (2005)] demonstrates the existence of structural modes in several landmines. The work reported herein parallels the work of Zagrai et al. in studying the structural modes of the pressure plate of a plastic, cylindrically symmetric, antitank landmine. The pressure plate is considered to act as an elastically supported thin elastic plate. An observed perturbation of the first symmetric mode of the pressure plate is caused by the landmine’s shock-resisting mechanism. This is validated by a lumped element model for the first symmetric mode coupled to the shock-resisting mechanism.

1.
A.
Zagrai
,
D.
Donskoy
, and
A.
Ekimov
, “
Structural vibrations of buried land mines
,”
J. Acoust. Soc. Am.
118
(
6
),
3619
3628
(
2005
).
2.
W. R.
Scott
, Jr.
and
J. S.
Martin
, “
Experimental investigation of the acousto-electromagnetic sensor for locating land mines
,”
Proc. SPIE
3710
,
204
214
(
1999
).
3.
D.
Donskoy
,
A.
Ekimov
,
N.
Sedunov
, and
M.
Tsionskiy
, “
Nonlinear seismo-acoustic land mine detection and discrimination
,”
J. Acoust. Soc. Am.
111
(
6
),
2705
2714
(
2002
).
4.
M. S.
Korman
,
W. C. K.
Alberts
 II
, and
J. M.
Sabatier
, “
Nonlinear acoustic experiments for landmine detection: The significance of the top plate normal modes
,”
Proc. SPIE
5415
,
42
50
(
2004
).
5.
Jane’s Mines and Mine Clearance 2001–2002
, edited by
C.
King
(
Jane’s Information Group, Inc.
, Alexandria, VA,
2001
).
6.
A.
Freeman
,
S. C.
Mantell
, and
J. H.
Davidson
, “
Mechanical performance of polysulfone, polybutylene, and polyamide 6/6 in hot chlorinated water
,”
Sol. Energy
79
(
6
),
624
637
(
2005
).
7.
C.-C.
Pai
,
R.-J.
Jeng
,
S. J.
Grossman
, and
J.-C.
Huang
, “
Effects of moisture on thermal and mechanical properties of Nylon-6,6
,”
Adv. Polym. Technol.
9
(
2
),
157
163
(
1989
).
8.
D. J.
Inman
,
Engineering Vibrations
, 2nd ed. (
Prentice-Hall
, Englewood Cliffs NJ,
2001
).
9.
P.
Avitabile
, “
Experimental modal analysis: A simple non-mathematical presentation
,”
Sound Vib.
35
(
1
),
20
31
(
2001
).
10.
L. D.
Landau
and
E. M.
Lifshitz
,
Theory of Elasticity
, 2nd ed., translated by
J. B.
Sykes
and
W. H.
Reid
(
Pergamon Books
, New York,
1970
).
11.
A. W.
Leissa
,
Vibration of Plates
(
Acoustical Society of America
, Melville, NY,
1993
).
12.
S.
Timoshenko
and
J. N.
Goodier
,
Theory of Elasticity
, 2nd ed. (
McGraw-Hill
, New York,
1951
).
13.
S.
Timoshenko
and
S.
Woinowsky-Krieger
,
Theory of Plates and Shells
, 2nd ed. (
McGraw-Hill
, New York,
1959
).
14.
W. P.
Mason
,
Electromechanical Transducers and Wave Filters
, 2nd ed. (
Van Nostrand
, Princeton, NJ,
1948
).
15.
N. H.
Fletcher
and
T. D.
Rossing
,
The Physics of Musical Instruments
, 2nd ed. (
Springer-Verlag
, New York,
1998
).
16.
R. S.
Christian
,
R. E.
Davis
,
A.
Tubis
,
C. A.
Anderson
,
R. I.
Mills
, and
T. D.
Rossing
, “
Effects of air loading on timpani membrane vibrations
,”
J. Acoust. Soc. Am.
76
(
5
),
1336
1345
(
1984
).
17.
L. M.
Brekhovskikh
and
V.
Goncharov
,
Mechanics of Continua and Wave Dynamics
, 2nd ed. (
Springer-Verlag
, Berlin,
1994
).
18.
J. D.
AchenBach
,
Wave Propagation in Elastic Solids
(
North-Holland
, Amsterdam,
1973
).
19.
R.
Bachrach
,
J.
Dvorkin
, and
A. M.
Nur
, “
Seismic velocities and Poisson’s ratio of shallow unconsolidated sands
,”
Geophys. J.
65
(
2
),
559
564
(
2000
).
20.
G.
Mavko
,
T.
Mukerji
, and
J.
Dvorkin
,
The Rock Physics Handbook: Tools for Seismic Analysis in Porous Media
(
Cambridge University Press
, Cambridge,
1998
).
You do not currently have access to this content.