A family of exact solutions of the Helmholtz equation is used to represent transversely bounded helicoidal sound beams. Simple results are obtained for the energy content per unit length, the momentum content per unit length, and the angular momentum content per unit length. The analysis is restricted to lossless media; scattering and viscous damping are neglected. The energy, momentum, and angular momentum are calculated to second order in the velocity potential. The angular momentum content is always equal to times the energy content, where (an integer) is the topological charge and is the angular frequency.
REFERENCES
1.
B. T.
Hefner
and P. L.
Marston
, “Acoustical helicoidal waves and Laguerre-Gaussian beams: Applications to scattering and to angular momentum transport
,” J. Acoust. Soc. Am.
103
, 2971
(1998
).Proceedings of the Joint Meeting of the 16th International Congress on Acoustics and the 137th Meeting of the Acoustical Society of America
(Acoustical Society of America
, 1998
), pp. 1921
–1922
.2.
B. T.
Hefner
and P. L.
Marston
, “An acoustical helicoidal wave transducer with applications for the alignment of ultrasonic and underwater systems
,” J. Acoust. Soc. Am.
106
, 3313
–3316
(1999
).3.
J-L.
Thomas
and R.
Marchiano
, “Pseudo angular momentum and topological charge conservation for nonlinear acoustical vortices
,” Phys. Rev. Lett.
91
, 244302
(2003
).4.
S.
Gspan
, A.
Meyer
, S.
Bernet
, and M.
Ritsch-Marte
, “Optoacoustic generation of a helicoidal ultrasonic beam
,” J. Acoust. Soc. Am.
115
, 1142
–1146
(2004
).5.
R.
Marchiano
and J-L.
Thomas
, “Synthesis and analysis of linear and nonlinear acoustic vortices
,” Phys. Rev. E
71
, 066616
(2005
).6.
J.
Wu
, “Acoustical tweezers
,” J. Acoust. Soc. Am.
89
, 2140
–2143
(1991
).7.
J.
Lee
, K.
Ha
, and K.
Shung
, “A theoretical study of the feasibility of acoustical tweezers: Ray acoustics approach
,” J. Acoust. Soc. Am.
117
, 3273
–3280
(2005
).8.
L.
Allen
, S. M.
Padgett
, and M. J.
Padgett
, Optical Angular Momentum
(IOP
, Bristol, 2003
), Chap. 4.9.
J. W. S.
Rayleigh
, “On an instrument capable of measuring the intensity of aerial vibrations
,” Philos. Mag.
14
, 186
(1882
).10.
11.
J. B.
Keller
, “Acoustic torques and forces on disks
,” J. Acoust. Soc. Am.
29
, 1085
–1090
(1957
).12.
G.
Maidanik
, “Torques due to acoustical radiation pressure
,” J. Acoust. Soc. Am.
30
, 620
–623
(1958
).13.
L. D.
Landau
and E. M.
Lifshitz
, Fluid Mechanics
(Pergamon
, Oxford, 1959
), Chap. VIII.14.
J.
Lekner
, “Energy and momentum of sound pulses
,” Physica A
363
, 217
–225
(2006
).15.
M. F.
Hamilton
and C. L.
Morfey
, “Model equations
,” in Nonlinear Acoustics
, edited by M. F.
Hamilton
and D. T.
Blackstock
(Academic
, San Diego, 1998
), Chap. 3, Eq. (26).16.
17.
S. M.
Barnett
and L.
Allen
, “Orbital angular momentum and nonparaxial light beams
,” Opt. Commun.
110
, 670
–678
(1994
).18.
J.
Lekner
, “Invariants of three types of generalized Bessel beams
,” J. Opt. A, Pure Appl. Opt.
6
, 837
–843
(2004
).19.
G. N.
Watson
, Theory of Bessel Functions
, 2nd ed. (Cambridge University Press
, Cambridge, 1944
), Sec. 14.4.20.
J.
Lekner
, “Invariants of atom beams
,” J. Phys. B
37
, 1725
–1736
(2004
).21.
22.
J.
Lekner
, “Angular momentum of sound pulses
,” J. Phys.: Condens. Matter
18
, 6149
–6158
(2006
).© 2006 Acoustical Society of America.
2006
Acoustical Society of America
You do not currently have access to this content.