A family of exact solutions of the Helmholtz equation is used to represent transversely bounded helicoidal sound beams. Simple results are obtained for the energy content per unit length, the momentum content per unit length, and the angular momentum content per unit length. The analysis is restricted to lossless media; scattering and viscous damping are neglected. The energy, momentum, and angular momentum are calculated to second order in the velocity potential. The angular momentum content is always equal to mω times the energy content, where m (an integer) is the topological charge and ω is the angular frequency.

1.
B. T.
Hefner
and
P. L.
Marston
, “
Acoustical helicoidal waves and Laguerre-Gaussian beams: Applications to scattering and to angular momentum transport
,”
J. Acoust. Soc. Am.
103
,
2971
(
1998
).
Proceedings of the Joint Meeting of the 16th International Congress on Acoustics and the 137th Meeting of the Acoustical Society of America
(
Acoustical Society of America
,
1998
), pp.
1921
1922
.
2.
B. T.
Hefner
and
P. L.
Marston
, “
An acoustical helicoidal wave transducer with applications for the alignment of ultrasonic and underwater systems
,”
J. Acoust. Soc. Am.
106
,
3313
3316
(
1999
).
3.
J-L.
Thomas
and
R.
Marchiano
, “
Pseudo angular momentum and topological charge conservation for nonlinear acoustical vortices
,”
Phys. Rev. Lett.
91
,
244302
(
2003
).
4.
S.
Gspan
,
A.
Meyer
,
S.
Bernet
, and
M.
Ritsch-Marte
, “
Optoacoustic generation of a helicoidal ultrasonic beam
,”
J. Acoust. Soc. Am.
115
,
1142
1146
(
2004
).
5.
R.
Marchiano
and
J-L.
Thomas
, “
Synthesis and analysis of linear and nonlinear acoustic vortices
,”
Phys. Rev. E
71
,
066616
(
2005
).
6.
J.
Wu
, “
Acoustical tweezers
,”
J. Acoust. Soc. Am.
89
,
2140
2143
(
1991
).
7.
J.
Lee
,
K.
Ha
, and
K.
Shung
, “
A theoretical study of the feasibility of acoustical tweezers: Ray acoustics approach
,”
J. Acoust. Soc. Am.
117
,
3273
3280
(
2005
).
8.
L.
Allen
,
S. M.
Padgett
, and
M. J.
Padgett
,
Optical Angular Momentum
(
IOP
, Bristol,
2003
), Chap. 4.
9.
J. W. S.
Rayleigh
, “
On an instrument capable of measuring the intensity of aerial vibrations
,”
Philos. Mag.
14
,
186
(
1882
).
10.
J. W. S.
Rayleigh
,
Theory of Sound
(
Dover
, New York,
1896/1945
), Vol.
2
, Sec. 253b.
11.
J. B.
Keller
, “
Acoustic torques and forces on disks
,”
J. Acoust. Soc. Am.
29
,
1085
1090
(
1957
).
12.
G.
Maidanik
, “
Torques due to acoustical radiation pressure
,”
J. Acoust. Soc. Am.
30
,
620
623
(
1958
).
13.
L. D.
Landau
and
E. M.
Lifshitz
,
Fluid Mechanics
(
Pergamon
, Oxford,
1959
), Chap. VIII.
14.
J.
Lekner
, “
Energy and momentum of sound pulses
,”
Physica A
363
,
217
225
(
2006
).
15.
M. F.
Hamilton
and
C. L.
Morfey
, “
Model equations
,” in
Nonlinear Acoustics
, edited by
M. F.
Hamilton
and
D. T.
Blackstock
(
Academic
, San Diego,
1998
), Chap. 3, Eq. (26).
16.
J. A.
Stratton
,
Electromagnetic Theory
(
McGraw-Hill
, New York,
1941
), p.
356
.
17.
S. M.
Barnett
and
L.
Allen
, “
Orbital angular momentum and nonparaxial light beams
,”
Opt. Commun.
110
,
670
678
(
1994
).
18.
J.
Lekner
, “
Invariants of three types of generalized Bessel beams
,”
J. Opt. A, Pure Appl. Opt.
6
,
837
843
(
2004
).
19.
G. N.
Watson
,
Theory of Bessel Functions
, 2nd ed. (
Cambridge University Press
, Cambridge,
1944
), Sec. 14.4.
20.
J.
Lekner
, “
Invariants of atom beams
,”
J. Phys. B
37
,
1725
1736
(
2004
).
21.
J.
Lighthill
, “
Acoustic streaming
,”
J. Sound Vib.
61
,
391
418
(
1978
), Eq. (12).
22.
J.
Lekner
, “
Angular momentum of sound pulses
,”
J. Phys.: Condens. Matter
18
,
6149
6158
(
2006
).
You do not currently have access to this content.