Time-reversed acoustics (TRA) has been developed in the last few years as a powerful tool for several applications, based on the theoretical properties emerging from the time reversal invariance of the wave equation. TRA is expected to be a good basis for the development of imaging techniques in the field of nondestructive evaluation. For this purpose, however, data processing is necessary to discriminate between images due to defects (in general nonlinear scatterers) and images due to linear inclusions, boundaries, etc. We propose here an approach based on the filtering of the time signals. The image of the scatterer is obtained through numerical simulations of the back propagation in a fictitious reference specimen. We validate the approach using the inversion of synthetic data. We also estimate the robustness of the procedure in the presence of constraints that can occur in any experimental procedure.

1.
M.
Fink
, “
Time reversal of ultrasonic fields. Parts I, II and III
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
39
,
555
592
(
1992
).
2.
M.
Fink
, “
Time reversed acoustics
,”
Phys. Today
50
,
34
40
(
1997
).
3.
M.
Fink
, “
Time-reversal mirrors
,”
J. Phys. D
26
,
1333
1350
(
1997
).
4.
A.
Derode
,
P.
Roux
, and
M.
Fink
, “
Robust acoustic time reversal with high-order multiple scattering
,”
Phys. Rev. Lett.
75
,
4206
4209
(
1995
).
5.
G. A.
Melkov
,
V. I.
Vasyuchka
,
Yu. V.
Kobljanskyj
, and
A. N.
Slavin
, “
Wave-front reversal in a medium with inhomogeneities and an anisotropic wave spectrum
,”
Phys. Rev. B
70
,
224407
(
2004
).
6.
M.
Fink
,
D.
Cassereau
,
A.
Derode
,
C.
Prada
,
P.
Roux
,
M.
Tanter
,
J.-L.
Thomas
, and
F.
Wu
, “
Time-reversed acoustics
,”
Rep. Prog. Phys.
63
,
1933
1995
(
2000
).
7.
P.
Blomgren
,
G.
Papanicolaou
, and
H.
Zhao
, “
Super-resolution in time-reversal acoustics
,”
J. Acoust. Soc. Am.
111
,
230
248
(
2002
).
8.
G.
Draeger
,
G.
Cassereau
, and
D.
Fink
, “
Theory of the time-reversal process in solids
,”
J. Acoust. Soc. Am.
102
,
1289
1295
(
1997
).
9.
P. P.
Delsanto
,
P. A.
Johnson
,
M.
Scalerandi
, and
J. A.
TenCate
, “
LISA simulations of time-reversed acoustic and elastic wave experiments
,”
J. Phys. D
35
,
3145
3152
(
2002
).
10.
A. M.
Sutin
,
J. A.
TenCate
, and
P. A.
Johnson
, “
Single-channel time reversal in elastic solids
,”
J. Acoust. Soc. Am.
116
,
2779
2784
(
2004
).
11.
M.
Tanter
,
J.-L.
Thomas
,
F.
Coulouvrat
, and
M.
Fink
, “
Time reversal invariance of nonlinear acoustic wave propagation in weakly viscous media
,”
IEEE Ultrasonics Symposium
(
IEEE, Piscataway
,
1999
), pp.
419
422
.
12.
K. B.
Cunningham
,
M. F.
Hamilton
,
A. P.
Brysev
, and
L. M.
Krutyansky
, “
Time reversed sound beams of finite amplitude
,”
J. Acoust. Soc. Am.
109
,
2668
2674
(
2001
).
13.
D. R.
Jackson
and
D. R.
Dowling
, “
Phase conjugation in underwater acoustics
,”
J. Acoust. Soc. Am.
89
,
171
181
(
1991
).
14.
L. J.
Huang
,
M.
Fehler
, and
R. S.
Wu
, “
Extended local Born Fourier migration method
,”
Geophys. J.
64
,
1524
1534
(
1999
).
15.
J.
Tromp
,
C.
Tape
, and
Q.
Liu
, “
Seismic tomography, adjoint methods, time reversal and banana-doughnut kernels
,”
Geophys. J. Int.
160
,
195
216
(
2005
).
16.
J. L.
Thomas
and
M. A.
Fink
, “
Ultrasonic beam focusing through tissue inhomogeneities with a time reversal mirror: Application to transskull therapy
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
43
,
1122
1129
(
1996
).
17.
J.-L.
Thomas
,
F.
Wu
, and
M.
Fink
, “
Time reversal focusing applied to lithotripsy
,”
Ultrason. Imaging
18
,
106
121
(
1996
).
18.
W. A.
Kuperman
,
W. S.
Hodgkiss
,
H. C.
Song
,
T.
Akal
,
C.
Ferla
, and
D. R.
Jackson
, “
Phase conjugation in the ocean: Experimental demonstration of an acoustic time-reversal mirror
,”
J. Acoust. Soc. Am.
103
,
25
40
(
1998
).
19.
P.
Roux
,
B.
Roman
, and
M.
Fink
, “
Time-reversal in an ultrasonic waveguide
,”
Appl. Phys. Lett.
70
,
1811
1813
(
1998
).
20.
Y.
Xu
and
L. V.
Wang
, “
Time reversal and its application to tomography with diffracting sources
,”
Phys. Rev. Lett.
92
,
339021
339024
(
2004
).
21.
C.
Prada
 et al., “
Decomposition of the time reversal operator: Detection and selective focusing on two scatterers
,”
J. Acoust. Soc. Am.
99
,
2067
2077
(
1996
).
22.
C.
Prada
,
E.
Kerbrat
,
D.
Cassereau
, and
M.
Fink
, “
Time reversal techniques in ultrasonic nondestructive testing of scattering media
,”
Inverse Probl.
18
,
1761
1773
(
2002
).
23.
X. D.
Wang
and
G. L.
Huang
, “
Identification of embedded cracks using back-propagating elastic waves
,”
Inverse Probl.
20
,
1393
1409
(
2004
).
24.
V.
Giurgiutiu
and
A.
Cuc
, “
Embedded non-destructive evaluation for structural health monitoring, damage detection, and failure prevention
,”
Schock Vibr. Dig.
37
,
83105
(
2005
).
25.
C. H.
Wang
,
J. T.
Rose
, and
F-K.
Chang
, “
A computerized timereversal method for structural health monitoring
,”
Proc. SPIE
5046
,
4858
(
2003
).
26.
H. W.
Park
,
H.
Sohn
,
K. H.
Law
, and
C. R.
Farrar
, “
Time reversal active sensing for health monitoring of a composite plate
,” J. Sound Vib. in press (
2006
).
27.
T.
Leutenegger
and
J.
Dual
, “
Detection of defects in cylindrical structures using a time reverse method and a finite-difference approach
,”
Ultrasonics
40
,
721
725
(
2002
).
28.
H. W.
Chun
,
J. T.
Rose
, and
F-K.
Chang
, “
A synthetic time-reversal imaging method for structural health monitoring
,”
Smart Mater. Struct.
13
,
415
423
(
2004
).
29.
P. P.
Delsanto
and
M.
Scalerandi
, “
Modeling nonclassical nonlinearity, conditioning and slow dynamics effects in mesoscopic elastic materials
,”
Phys. Rev. B
68
,
064107
(
2003
).
30.
M.
Nobili
and
M.
Scalerandi
, “
Temperature effects on the elastic properties of hysteretic elastic media: Modeling and simulations
,”
Phys. Rev. B
69
,
104105
(
2004
).
31.
V. V.
Kazakov
,
A.
Sutin
, and
P. A.
Johnson
, “
Sensitive imaging of an elastic nonlinear wave-scattering source in a solid
,”
Appl. Phys. Lett.
81
,
646
648
(
2002
).
32.
R. A.
Guyer
and
P. A.
Johnson
, “
Nonlinear mesoscopic elasticity: Evidence for a new class of materials
,”
Phys. Today
52
,
30
36
(
1999
).
33.
P. P.
Delsanto
,
A. S.
Gliozzi
,
M.
Hirsekorn
, and
M.
Nobili
, “
A 2D spring model for the simulation of ultrasonic wave propagation in nonlinear hysteretic media
,”
Ultrasonics
44
,
279
286
(
2006
).
34.
R. S.
Schechter
,
H. H.
Chaskelis
,
R. B.
Mignogna
, and
P. P.
Delsanto
, “
Real-time parallel and visualization of ultrasonic pulses in solids
,”
Science
265
,
1188
1192
(
1994
).
35.
P. P.
Delsanto
and
M.
Scalerandi
, “
A spring model for the simulation of wave propagation across imperfect interfaces
,”
J. Acoust. Soc. Am.
104
,
2584
2591
(
1998
).
36.
P. P.
Delsanto
,
R. B.
Mignogna
, and
R. S.
Schechter
,
”Connection machine simulation of ultrasonic wave propagation in materials II: The two dimensional case
,
Wave Motion
20
,
295
314
(
1994
).
37.
M.
Bentahar
,
H.
El Aqra
,
R.
El Guerjouma
,
M.
Griffa
, and
M.
Scalerandi
, “
Hysteretic elasticity in damaged concrete
,”
Phys. Rev. B
73
,
014116
(
2006
).
38.
M.
Scalerandi
,
P. P.
Delsanto
,
V.
Agostini
,
K.
Van Den Abeele
, and
P. A.
Johnson
, “
Local interaction simulation approach to modeling nonclassical, nonlinear elastic behavior in solids
,”
J. Acoust. Soc. Am.
113
,
3049
3059
(
2003
).
39.
R. A.
Guyer
,
K. R.
McCall
,
G. N.
Boitnott
,
L. B.
Hilbert
 Jr.
, and
T. J.
Plona
, “
Quantitative implementation of Preisach-Mayergoyz space to find static and dynamic elastic moduli in rock
,”
J. Geophys. Res.
102
,
5281
5293
(
1997
).
40.
P. P.
Delsanto
,
N. K.
Batra
,
R. B.
Mignogna
, and
M.
Scalerandi
, “
Parallel processing simulations of the propagation of ultrasonic waves through material interfaces
,”
Proc. IEEE Ultras. Symposium
(
IEEE, Piscataway
, 1998), Vol.
2
, pp.
1129
1138
.
41.
L.
Borcea
,
G.
Papanicolau
,
C.
Tsogka
, and
J.
Berryman
, “
Imaging and time reversal in random media
,”
Inverse Probl.
18
,
1247
1279
(
2002
).
42.
S. K.
Lehman
and
A. J.
Devaney
, “
Transmission mode time-reversal super-resolution imaging
,”
J. Acoust. Soc. Am.
113
,
2742
2753
(
2003
).
43.
F. K.
Gruber
,
E. A.
Marengo
, and
A. J.
Devaney
, “
Time-reversal imaging with multiple signal classification considering scattering between the targets
,”
J. Acoust. Soc. Am.
115
,
3042
3047
(
2004
).
44.
P.
Blomgren
,
G.
Papanicolau
, and
H.
Zhao
, “
Long distance time reversal and imaging in random media: Numerical simulations
,”
J. Acoust. Soc. Am.
,
110
,
2633
(
2001
).
45.
A. S.
Gliozzi
,
M.
Nobili
, and
M.
Scalerandi
, “
Modeling and characterization of localized micro-damage through resonance measurements
,”
J. Phys. D
39
,
3895
3903
(
2006
).
46.
K.
Van den Abeele
,
S.
Sutin
, and
P. A.
Johnson
, “
Nonlinear elastic wave spectroscopy (NEWS) techniques to discern material damage, Part I: Nonlinear wave modulation spectroscopy (NWMS)
,”
Res. Nondestruct. Eval.
12
,
17
30
(
2000
).
You do not currently have access to this content.