A modified technique to measure acoustic nonlinearity in fatigued components is proposed in this paper. The advantage of the proposed technique is that it minimizes measurement errors due to the couplant between the transducers and the specimen. Measurements are performed on a fatigued steel 4340 specimen and the coefficients of variation of the nonlinearity parameter are calculated. It is shown that the coefficients of variation of the nonlinearity parameter obtained using the proposed technique are approximately half of that obtained using the conventional technique.

1.
M.
Klesnil
and
P.
Lukáš
,
Fatigue of Metallic Materials
(
Elsevier
, New York,
1992
).
2.
S.
Suresh
,
Fatigue of Materials
(
Cambridge
, New York,
1998
).
3.
A.
Hikata
,
B. B.
Chick
, and
C.
Elbaum
, “
Effect of dislocations on finite amplitude ultrasonic waves in aluminum
,”
Appl. Phys. Lett.
3
,
195
197
(
1963
).
4.
T.
Suzuki
,
A.
Hikata
, and
C.
Elbaum
, “
Anharmonicity due to glide motion of dislocations
,”
J. Appl. Phys.
9
,
2761
2766
(
1964
).
5.
A.
Hikata
and
C.
Elbaum
, “
Generation of ultrasonic second and third harmonics due to dislocations
,”
Phys. Rev.
144
,
469
477
(
1966
).
6.
J. H.
Cantrell
and
W. T.
Yost
, “
Acoustic harmonic generation from fatigue-induced dislocation dipoles
,”
Philos. Mag. A
69
(
2
),
315
326
(
1994
).
7.
J. H.
Cantrell
, “
Substructural organization, dislocation plasticity and harmonic generation in cyclically stressed wavy slip metals
,”
Proc. R. Soc. London, Ser. A
460
,
757
780
(
2004
).
8.
S. S.
Kulkarni
,
L.
Sun
,
B.
Moran
,
S.
Krishnaswamy
, and
J. D.
Achenbach
, “
A probabilistic method to predict fatigue crack initiation
,”
Int. J. Fract.
137
,
9
17
(
2006
).
9.
J. K.
Na
and
J. H.
Cantrell
, “Linear and nonlinear ultrasonic properties of fatigued 410Cb stainless steel,” in
Review of Progress in Quantitative NDE
, edited by
D. O.
Thompson
and
D. E.
Chimenti
(
Plenum
, New York,
1996
), Vol. 15,
1347
1352
.
10.
W. T.
Yost
,
J. H.
Cantrell
, and
J. K.
Na
, “Nonlinear ultrasonic pulsed measurements and applications to metal processing and fatigue,” in
Review of Progress in Quantitative NDE
, edited by
D. O.
Thompson
and
D. E.
Chimenti
(
Plenum
, New York,
2001
), Vol. 20, pp.
1268
1275
.
11.
J.
Frouin
,
S.
Sathish
, and
J. K.
Na
, “
Real-time monitoring of acoustic linear and nonlinear behavior of titanium alloys during low-cycle fatigue and high-cycle fatigue
,”
Proc. SPIE
3993
,
60
67
(
2000
).
12.
J. H.
Cantrell
and
W. T.
Yost
, “
Nonlinear ultrasonic characterization of fatigue microstructures
,”
Int. J. Fatigue
23
,
S487
S490
(
2001
).
13.
W. L.
Morris
,
O.
Buck
, and
R. V.
Inman
, “
Acoustic harmonic generation due to fatigue damage in high-strength aluminum
,”
J. Appl. Phys.
50
(
11
),
6737
6741
(
1979
).
14.
D. J.
Barnard
,
L. J. H.
Brasche
,
D.
Raulerson
, and
A. D.
Degtyar
, “Monitoring fatigue damage accumulation with Rayleigh wave harmonic generation measurements,” in
Review of Progress in Quantitative NDE
, edited by
D. O.
Thompson
and
D. E.
Chimenti
(
Plenum
, New York,
2003
), Vol. 22, pp.
1393
1400
.
15.
C.
Woodward
,
K. R.
White
,
D. V.
Jauregui
, and
J.
Stauffer
, “Nonlinear ultrasonic evaluation of concrete microcracking”, in
Review of Progress in Quantitative NDE
, edited by
D. O.
Thompson
and
D. E.
Chimenti
(
Plenum
, New York,
2004
), Vol. 23, pp.
1022
1026
.
16.
J.
Krautkrämer
and
H.
Krautkrämer
,
Ultrasonic Testing of Materials
(
Springer-Verlag
, Berlin,
1990
).
17.
J. D.
Achenbach
,
I. N.
Komsky
,
Y. C.
Lee
, and
Y. C.
Angel
, “
Self-calibrating ultrasonic technique for crack depth measurement
,”
J. Nondestruct. Eval.
11
(
2
),
103
108
(
1992
).
18.
A.
Hikata
and
C.
Elbaum
, “
Generation of ultrasonic second and third harmonics due to dislocations
,”
Phys. Rev.
144
(
2
),
469
477
(
1966
).
19.
J. H.
Cantrell
, Fundamentals and applications of nonlinear ultrasonic NDE, in
Ultrasonic Nondestructive Evaluation: Engineering and Biological Material Characterization
, edited by
T.
Kundu
(
CRC Press
, Boca Raton,
2003
).
20.
K. E.-A.
Van Den Abeele
,
P. A.
Johnson
,
R. A.
Guyer
, and
K. R.
McCall
, “
On the quasi-analytic treatment of hysteretic nonlinear response in elastic wave propagation
,”
J. Acoust. Soc. Am.
101
,
1885
1898
(
1997
).
21.
E. L.
Adler
,
E.
Bridoux
,
G.
Coussot
, and
E.
Dieulesaint
, “
Harmonic generation of acoustic surface waves in Bi12GeO20 and LiNbO3
,”
IEEE Trans. Sonics Ultrason.
SU-20
(
1
),
13
16
(
1973
).
22.
D. C.
Hurley
, “
Nonlinear propagation of narrow-band Rayleigh waves excited by a comb transducer
,”
J. Acoust. Soc. Am.
106
(
4
),
1782
1788
(
1999
).
23.
A. P.
Mayer
, “
Surface acoustic waves in nonlinear elastic media
,”
Phys. Rep.
256
,
237
366
(
1995
).
24.
N.
Kalyanasundaram
, “
Nonlinear surface acoustic waves on an isotropic solid
,”
Int. J. Eng. Sci.
19
,
279
286
(
1981
).
25.
R. W.
Lardner
, “
Nonlinear surface waves on an elastic solid
,”
Int. J. Eng. Sci.
21
,
1331
1342
(
1983
).
26.
D. F.
Parker
, “
Waveform evolution for nonlinear surface acoustic waves
,”
Int. J. Eng. Sci.
26
,
59
75
(
1988
).
27.
E. A.
Zabolotskaya
, “
Nonlinear propagation of plane and circular Rayleigh waves in isotropic solids
,”
J. Acoust. Soc. Am.
91
,
2569
2575
(
1992
).
28.
H.
Ogi
,
M.
Hirao
, and
K.
Minoura
, “
Noncontact measurement of ultrasonic attenuation during rotating fatigue test of steel
,”
J. Appl. Phys.
81
(
8
),
3677
3684
(
1997
).
29.
H.
Ogi
,
M.
Hirao
, and
S.
Aoki
, “
Noncontact monitoring of surface-wave nonlinearity for predicting the remaining life of fatigued steels
,”
J. Appl. Phys.
90
(
1
),
438
442
(
2001
).
You do not currently have access to this content.