A modified technique to measure acoustic nonlinearity in fatigued components is proposed in this paper. The advantage of the proposed technique is that it minimizes measurement errors due to the couplant between the transducers and the specimen. Measurements are performed on a fatigued steel 4340 specimen and the coefficients of variation of the nonlinearity parameter are calculated. It is shown that the coefficients of variation of the nonlinearity parameter obtained using the proposed technique are approximately half of that obtained using the conventional technique.
REFERENCES
1.
2.
3.
A.
Hikata
, B. B.
Chick
, and C.
Elbaum
, “Effect of dislocations on finite amplitude ultrasonic waves in aluminum
,” Appl. Phys. Lett.
3
, 195
–197
(1963
).4.
T.
Suzuki
, A.
Hikata
, and C.
Elbaum
, “Anharmonicity due to glide motion of dislocations
,” J. Appl. Phys.
9
, 2761
–2766
(1964
).5.
A.
Hikata
and C.
Elbaum
, “Generation of ultrasonic second and third harmonics due to dislocations
,” Phys. Rev.
144
, 469
–477
(1966
).6.
J. H.
Cantrell
and W. T.
Yost
, “Acoustic harmonic generation from fatigue-induced dislocation dipoles
,” Philos. Mag. A
69
(2
), 315
–326
(1994
).7.
J. H.
Cantrell
, “Substructural organization, dislocation plasticity and harmonic generation in cyclically stressed wavy slip metals
,” Proc. R. Soc. London, Ser. A
460
, 757
–780
(2004
).8.
S. S.
Kulkarni
, L.
Sun
, B.
Moran
, S.
Krishnaswamy
, and J. D.
Achenbach
, “A probabilistic method to predict fatigue crack initiation
,” Int. J. Fract.
137
, 9
–17
(2006
).9.
J. K.
Na
and J. H.
Cantrell
, “Linear and nonlinear ultrasonic properties of fatigued stainless steel,” in Review of Progress in Quantitative NDE
, edited by D. O.
Thompson
and D. E.
Chimenti
(Plenum
, New York, 1996
), Vol. 15, 1347
–1352
.10.
W. T.
Yost
, J. H.
Cantrell
, and J. K.
Na
, “Nonlinear ultrasonic pulsed measurements and applications to metal processing and fatigue,” in Review of Progress in Quantitative NDE
, edited by D. O.
Thompson
and D. E.
Chimenti
(Plenum
, New York, 2001
), Vol. 20, pp. 1268
–1275
.11.
J.
Frouin
, S.
Sathish
, and J. K.
Na
, “Real-time monitoring of acoustic linear and nonlinear behavior of titanium alloys during low-cycle fatigue and high-cycle fatigue
,” Proc. SPIE
3993
, 60
–67
(2000
).12.
J. H.
Cantrell
and W. T.
Yost
, “Nonlinear ultrasonic characterization of fatigue microstructures
,” Int. J. Fatigue
23
, S487
–S490
(2001
).13.
W. L.
Morris
, O.
Buck
, and R. V.
Inman
, “Acoustic harmonic generation due to fatigue damage in high-strength aluminum
,” J. Appl. Phys.
50
(11
), 6737
–6741
(1979
).14.
D. J.
Barnard
, L. J. H.
Brasche
, D.
Raulerson
, and A. D.
Degtyar
, “Monitoring fatigue damage accumulation with Rayleigh wave harmonic generation measurements,” in Review of Progress in Quantitative NDE
, edited by D. O.
Thompson
and D. E.
Chimenti
(Plenum
, New York, 2003
), Vol. 22, pp. 1393
–1400
.15.
C.
Woodward
, K. R.
White
, D. V.
Jauregui
, and J.
Stauffer
, “Nonlinear ultrasonic evaluation of concrete microcracking”, in Review of Progress in Quantitative NDE
, edited by D. O.
Thompson
and D. E.
Chimenti
(Plenum
, New York, 2004
), Vol. 23, pp. 1022
–1026
.16.
J.
Krautkrämer
and H.
Krautkrämer
, Ultrasonic Testing of Materials
(Springer-Verlag
, Berlin, 1990
).17.
J. D.
Achenbach
, I. N.
Komsky
, Y. C.
Lee
, and Y. C.
Angel
, “Self-calibrating ultrasonic technique for crack depth measurement
,” J. Nondestruct. Eval.
11
(2
), 103
–108
(1992
).18.
A.
Hikata
and C.
Elbaum
, “Generation of ultrasonic second and third harmonics due to dislocations
,” Phys. Rev.
144
(2
), 469
–477
(1966
).19.
J. H.
Cantrell
, Fundamentals and applications of nonlinear ultrasonic NDE, in Ultrasonic Nondestructive Evaluation: Engineering and Biological Material Characterization
, edited by T.
Kundu
(CRC Press
, Boca Raton, 2003
).20.
K. E.-A.
Van Den Abeele
, P. A.
Johnson
, R. A.
Guyer
, and K. R.
McCall
, “On the quasi-analytic treatment of hysteretic nonlinear response in elastic wave propagation
,” J. Acoust. Soc. Am.
101
, 1885
–1898
(1997
).21.
E. L.
Adler
, E.
Bridoux
, G.
Coussot
, and E.
Dieulesaint
, “Harmonic generation of acoustic surface waves in and
,” IEEE Trans. Sonics Ultrason.
SU-20
(1
), 13
–16
(1973
).22.
D. C.
Hurley
, “Nonlinear propagation of narrow-band Rayleigh waves excited by a comb transducer
,” J. Acoust. Soc. Am.
106
(4
), 1782
–1788
(1999
).23.
A. P.
Mayer
, “Surface acoustic waves in nonlinear elastic media
,” Phys. Rep.
256
, 237
–366
(1995
).24.
N.
Kalyanasundaram
, “Nonlinear surface acoustic waves on an isotropic solid
,” Int. J. Eng. Sci.
19
, 279
–286
(1981
).25.
R. W.
Lardner
, “Nonlinear surface waves on an elastic solid
,” Int. J. Eng. Sci.
21
, 1331
–1342
(1983
).26.
D. F.
Parker
, “Waveform evolution for nonlinear surface acoustic waves
,” Int. J. Eng. Sci.
26
, 59
–75
(1988
).27.
E. A.
Zabolotskaya
, “Nonlinear propagation of plane and circular Rayleigh waves in isotropic solids
,” J. Acoust. Soc. Am.
91
, 2569
–2575
(1992
).28.
H.
Ogi
, M.
Hirao
, and K.
Minoura
, “Noncontact measurement of ultrasonic attenuation during rotating fatigue test of steel
,” J. Appl. Phys.
81
(8
), 3677
–3684
(1997
).29.
H.
Ogi
, M.
Hirao
, and S.
Aoki
, “Noncontact monitoring of surface-wave nonlinearity for predicting the remaining life of fatigued steels
,” J. Appl. Phys.
90
(1
), 438
–442
(2001
).© 2006 Acoustical Society of America.
2006
Acoustical Society of America
You do not currently have access to this content.