The Florida manatee is regularly exposed to high volumes of vessel traffic and other human-related noise because of its coastal distribution. Quantifying specific aspects of the manatee’s acoustic environment will allow for a better understanding of how these animals respond to both natural and human-induced changes in their environment. Transmission loss measurements were made in 24 sampling sites that were chosen based on the frequency of manatee presence. The Monterey-Miami Parabolic Equation model was used to relate environmental parameters to transmission loss in two extremely shallow water environments: seagrass beds and dredged habitats. Model accuracy was verified by field tests at all modeled sites. Results indicated that high-use grassbeds have higher levels of transmission loss for frequencies above 2kHz compared to low-use sites of equal food species composition and density. This also happens to be the range of most efficient sound propagation inside the grassbed habitat and includes the dominant frequencies of manatee vocalizations. The acoustic environment may play a more important role in manatee grassbed selection than seagrass coverage or species composition, as linear regression analysis showed no significant correlation between usage and either total grass coverage, individual species coverage, or aerial pattern.

1.
Ackerman
,
B. B.
,
Wright
,
S. D.
,
Bonde
,
R. K.
,
Odell
,
D. K.
, and
Banowetz
,
D. J.
(
1995
). “Trends and patterns in mortality of manatees in Florida”. in Population Biology of the Florida Manatee (Trichechus manatus latirostris), National Biological Service, Information and Technical Report No. 1, pp.
1974
1992
.
1.
Bengtson
(
1983
). “
Estimating food consumption of free-ranging manatees in Florida
,”
Journal of Wildlife Management
47
:
1186
1192
.
2.
Bongiovanni
,
K.
,
Badiey
,
M.
, and
Seigmann
,
W. L.
(
1996
). “
Interference patterns of frequency dependent transmission loss for shallow-water propagation
,”
J. Acoust. Soc. Am.
99
,
2523
2529
.
3.
Bradbury
,
J. W.
, and
Vehrencamp
,
S. L.
(
1998
).
Principles of Animal Communication
(
Sinauer Associates
, Sunderland, MA).
4.
Brekhovskikh
,
L. M.
(
1960
).
Waves in a Layered Media
(
Academic
, New York).
5.
Camp
,
D. K.
,
Lyons
,
W. G.
, and
Perkins
,
T. H.
(
1998
). Checklists of Selected Marine Invertebrates of Florida, FMRI Technical Report No. TR-3, Florida Department of Environmental Protections.
6.
Collins
,
M. D.
, and
Chin-Bing
,
S. A.
(
1990
). “
A three-dimensional parabolic equation model that includes the effects of rough boundaries
,”
J. Acoust. Soc. Am.
87
,
1104
1109
.
7.
Culter
,
J. K.
, and
Leverone
,
J. R.
(
1993
). “Bay bottom habitat assessment,” Mote Technical Report No. 303, Mote Marine Laboratory, Sarasota, FL.
8.
Etter
,
P. C.
(
1996
).
Underwater Acoustic Modeling
(
E & FN SPON
, London).
9.
Frisk
,
G. V.
(
1994
).
Ocean and Seabed Acoustics
(
PTR Prentice-Hall
, Englewood Cliffs, NJ).
27.
Gannon
,
J. G.
,
Scolardi
,
K. M.
,
Reynolds
,
J. E.
, III
, (in press). “Habitat selection by manatees in Sarasota Bay, Florida,” Marine Mammal Science.
10.
Gerstein
,
E. R.
(
2002
). “
Manatees, bioacoustics and boats
,”
Am. Sci.
90
,
154
163
.
11.
Hamilton
,
E. L.
(
1980
). “
Geoacoustic modeling of the sea floor
,”
J. Acoust. Soc. Am.
68
,
1313
1340
.
12.
Jensen
,
F. B.
(
1982
). “Numerical models of sound propagation in real oceans,” Proceedings of the MTS/IEEE Oceans 82 Conference, pp.
147
154
.
13.
Jensen
,
F. B.
(
1984
). “Numerical models in underwater acoustics”, in
Hybrid Formulation of Wave Propagation and Scattering
(
Martinus Nijhoff
, Dordrecht), pp.
295
335
.
14.
Koelsch
,
J.
(
1997
). “The seasonal occurrence and ecology of Florida manatees (Trichechus manatus latirostris) in coastal waters near Sarasota, FL,” M.S. thesis,
University of Southern Florida
, Tampa, 121 pp.
15.
Koelsch
,
J.
(
2001
). “
Reproduction in female manatees observed in Sarasota Bay, Florida
,”
Marine Mammal Sci.
17
(
2
),
331
342
.
16.
Kopp
,
B. S.
(
1998
). “The effect of nitrate fertilization and shading on physiological and mechanical properties of eelgrass (Zostera marina),” Ph.D. dissertation,
University of Rhode Island
, Narragansett.
17.
Lefebvre
,
L. W.
,
Ackerman
,
B. A.
,
Portier
,
K. M.
, and
Pollock
,
K. H.
(
1995
). “Aerial survey as a technique for estimating manatee population size and trend - problems and prospects,” in Population Biology of the Florida Manatee (Trichechus manatus latirostris). National Biological Service, Information and Technical Report No. 1, pp.
63
74
.
18.
Miksis-Olds
,
J. L.
(
2006
). “Manatee response to environmental noise,” Ph.D. dissertation,
University of Rhode Island
, Narragansett., 248 pp.
19.
Nowacek
,
D. P.
,
Buckstaff
,
K. C.
,
Johnson
,
M. P.
, and
Wells
,
R. S.
(
2001
). Transmission loss of vessel noise in manatee environments, Report No. 721, Mote Marine Laboratory, Sarasota, FL.
20.
Nowacek
,
D. P.
,
Casper
,
B. M.
,
Wells
,
R. S.
,
Nowacek
,
S. M.
, and
Mann
,
D. A.
(
2003
). “
Intraspecific and geographic variation of West Indian manatee (Trichechus manatus spp.) vocalizations (L)
,”
J. Acoust. Soc. Am.
114
(
1
),
66
69
.
21.
Officer
,
C. B.
(
1958
).
Introduction to the Theory of Sound Transmission
(
McGraw-Hill
, New York).
22.
Orchard
,
B. J.
,
Siegmann
,
W. L.
, and
Jacobson
,
M. J.
(
1992
). “
Three-dimensional time-domain paraxial approximations for ocean acoustic wave propagation
,”
J. Acoust. Soc. Am.
91
,
788
801
.
23.
Reynolds
,
J. E.
, III (
1995
). “Florida manatee population biology: Research progress, infrastructure, and applications for conservation and management,” in Population Biology of the Florida Manatee (Trichechus manatus latirostris), National Biological Service, Information and Technical Report No. 1. pp.
6
12
.
24.
Richardson
,
W.
,
Greene
,
C.
,
Malme
,
C.
, and
Thomson
,
D.
(
1995
).
Marine Mammals and Noise
(
Academic
, San Diego).
25.
Sabol
,
B.
,
McCarthy
,
E.
, and
Rocha
,
K.
(
1997
). “Hydroacoustic basis for detection and characterization of eelgrass (Zostera marina),” Proceedings of the Fourth International Conference Remote Sensing for Marine and Coastal Environments, 17–19 March, Vol. 1, pp.
679
693
.
26.
Sabol
,
B.
,
Melton
,
R. E.
,
Chamberlain
,
R.
,
Doering
,
P.
, and
Haunert
,
K.
(
2002
). “
Evaluation of a digital echo sounder system for detection of submersed aquatic vegetation
,”
Estuaries
25
(
1
),
133
141
.
24.
Sabol
,
B.
(private communication).
28.
Smith
,
K. B.
(
2001
). “
Convergence, stability, and variability of shallow water acoustic predictions using a split-step Fourier parabolic equation model
,”
J. Comput. Acoust.
9
,
243
285
.
29.
Smith
,
K. B.
, and
Tappert
,
F. D.
(
1993
). “UMPE: The University of Miami Parabolic Equation Model, Version 1.3,” Marine Physical Laboratory, SIO, Technical Memorandum No. 432, February 1993.
30.
Tomasko
,
D. A.
, and
Dawes
,
C. J.
(
1989
). “
Evidence for physiological integration between shaded and unshaded short shoots of Thalassia testudinum
,”
Mar. Ecol.: Prog. Ser.
54
,
299
305
.
31.
Tomasko
,
D. A.
,
Dawes
,
C. J.
, and
Hall
,
M. O.
(
1996
). “
The effects of anthropogenic nutrient enrichment on turtle grass (Thalassia testudinum) in Sarasota Bay
,”
Estuaries
19
,
448
456
.
32.
Urick
,
R. J.
(
1983
).
Principles of Underwater Sound
(
Peninsula
, Los Altos, CA).
You do not currently have access to this content.