The objective of this study is to model the propagation of guided waves in piezoelectric structures subjected to a prestress gradient. The constitutive equations for a piezoelectric bulk material are first modified to take into account a uniform prestress on a given cross section. Then, these modified constitutive equations are used to derive a formalism for the propagation of guided waves in piezoelectric structures under a prestress gradient. In particular, we modify the recursive stiffness matrix method to introduce a gradient of stress in a piezoelectric structure. Numerical studies are then led for a bending and for an exponential stress profile. For a piezoelectric plate, the Lamb and shear horizontal modes are found to be sensitive to the prestress gradient. In particular, some key features of dispersion curves appearing in the presence of a gradient of properties are highlighted. In the last part, these results are extended to a piezoelectric film laid down on a substrate in order to model the importance of the stress gradient on the behavior of an integrated structure. Lithium niobate is used for the plate and film material, and a silicon crystal is used as the substrate.

1.
J. M.
Herbert
,
Ferroelectric Transducers and Sensors
(
Gordon and Breach
,
New York
,
1982
).
2.
K. A.
Snook
,
J. Z.
Zhao
,
C. H. F.
Alves
,
J. M.
Cannata
,
W. H.
Chen
,
R. J.
Meyer
,
T. A.
Ritter
, and
K. K.
Shung
, “
High frequency transducers for medical ultrasonic imaging
,”
Proc. SPIE
3982
,
92
99
(
2000
).
3.
J. M.
Cannata
,
T. A.
Ritter
,
W.-H.
Chen
, and
K. K.
Shung
, “
Design of focused single element (50100MHz) tranducers using lithium niobate
,”
Proc. IEEE Ultrason. Symp.
(
2000
).
4.
L.
Lian
and
N. R.
Sottos
, “
Stress effects in sol-gel derived ferroelectric thin films
,”
J. Appl. Phys.
95
,
629
634
(
2004
).
5.
A.
Cimpoiasu
,
N. M.
Van Der Pers
,
T. H.
de Keyser
,
A.
Venema
, and
M. J.
Vellekoop
, “
Stress control of piezoelectric ZnO films on silicon substrates
,”
Smart Mater. Struct.
5
,
744
750
(
1996
).
6.
N. R.
Sottos
,
T.
Berfield
,
R.
Ong
, and
D. A.
Payne
, “
Residual stress effects on ferroelectric thin film patterning, properties and performance
,” XXI ICTAM, Poland (
2004
).
7.
G. A.
Maugin
,
J.
Pouget
,
R.
Drouot
, and
B.
Collet
,
Nonlinear Electromechanical Couplings
(
Wiley
,
Chichester
,
1992
).
8.
Q. M.
Zhang
and
J.
Zhao
, “
Electromechanical properties of lead zirconate titanate piezoceramics under the influence of mechanical stresses
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
46
,
1518
1526
(
1999
).
9.
G.
Yang
,
S.-F.
Liu
,
W.
Ren
, and
B. K.
Mukherjee
, “
Effects of uniaxial stress on the piezoelectric, dielectric, and mechanical properties of lead zirconate titanate piezoceramics
,” 3rd Asian Meet. Ferr. (AMF3), Hong Kong (
2000
).
10.
G.
Yang
,
S.-F.
Liu
,
W.
Ren
, and
B. K.
Mukherjee
, “
Uniaxial stress dependence of the piezoelectric properties of lead zirconate titanate ceramics
,”
Proc. SPIE
3992
,
103
113
(
2000
).
11.
A. H.
Nayfeh
, “
The general problem of elastic wave propagation in multilayered anisotropic media
,”
J. Acoust. Soc. Am.
89
,
1521
1531
(
1991
).
12.
A. H.
Nayfeh
and
H.-T.
Chien
, “
The influence of piezoelectricity on free and reflected waves from fluid-loaded anisotropic plates
,”
J. Acoust. Soc. Am.
91
,
1250
1261
(
1992
).
13.
P.
Heyliger
and
D. A.
Saravanos
, “
Exact free-vibration analysis of laminated plates with embedded piezoelectric layers
,”
J. Acoust. Soc. Am.
98
,
1547
1557
(
1995
).
14.
B. K.
Sinha
, “
Elastic waves on crystals under a bias
,”
Ferroelectrics
41
,
61
73
(
1982
).
15.
B. K.
Sinha
,
W. J.
Tanski
,
T.
Lukaszek
, and
A.
Ballato
, “
Influence of biasing stresses on the propagation of surface waves
,”
J. Appl. Phys.
57
,
767
776
(
1985
).
16.
C.
Desmet
,
U.
Kawald
,
A.
Mourad
,
W.
Lauriks
, and
J.
Thoen
, “
The behaviour of Lamb waves in stressed polymer foils
,”
J. Acoust. Soc. Am.
100
,
1509
1513
(
1996
).
17.
M. A.
Dowaikh
, “
On SH waves in a pre-stressed layered half space for an incompressible elastic material
,”
Mech. Res. Commun.
26
,
665
672
(
1999
).
18.
M. O.
Si-Chaib
,
H.
Djelouah
, and
T.
Boutkedjirt
, “
Propagation of ultrasonic waves in materials under bending forces
,”
NDT & E Int.
38
,
283
289
(
2005
).
19.
L.
Palmieri
,
G.
Socino
, and
E.
Verona
, “
Electroelastic effect in layer acoustic mode propagation along ZnO films on Si substrates
,”
Appl. Phys. Lett.
49
,
1581
1583
(
1986
).
20.
A.
Palma
,
L.
Palmieri
,
G.
Socino
, and
E.
Verona
, “
Acoustic Lamb wave-electric field nonlinear interaction in YZ LiNbO3 plates
,”
Appl. Phys. Lett.
46
,
25
27
(
1985
).
21.
S. G.
Joshi
, “
Electronically variable time delay in ultrasonic Lamb wave delay lines
,” Proc.-IEEE Ultrason. Symp.,
893
896
(
1996
).
22.
H.
Liu
,
T. J.
Wang
,
Z. K.
Wang
, and
Z. B.
Kuang
, “
Effect of a biasing electric field on the propagation of symmetric Lamb waves in piezoelectric plates
,”
Int. J. Solids Struct.
39
,
2031
2049
(
2002
).
23.
J.
Yang
, “
Free vibrations of an electroelastic body under biasing fields
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
52
,
358
364
(
2005
).
24.
H.
Liu
,
Z. B.
Kuang
, and
Z. M.
Cai
, “
Application of transfer matrix method in analysing the inhomogeneous initial stress problem in pre-stressed layered piezoelectric media
,” IUTAM Symp. Dyn. Advanc. Mat. & Smart Struct. (
2003
), pp.
263
272
.
25.
M.
Lematre
,
G.
Feuillard
,
T.
Delaunay
, and
M.
Lethiecq
, “
Modelling of ultrasonic wave propagation in integrated piezoelectric structures under pre-stress
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
53
,
685
696
(
2006
).
26.
W. T.
Thomson
, “
Transmission of elastic waves through a stratified solid medium
,”
J. Appl. Phys.
21
,
89
93
(
1950
).
27.
N. A.
Haskell
, “
The dispersion of surface waves in multilayered media
,”
Bull. Seismol. Soc. Am.
43
,
17
34
(
1953
).
28.
D.
Levesque
and
L.
Piche
, “
A robust transfer matrix formulation for the ultrasonic response of multilayered absorbing media
,”
J. Acoust. Soc. Am.
92
,
452
467
(
1992
).
29.
M.
Castaings
and
B.
Hosten
, “
Delta operator technique to improve the Thomson-Haskel method stability for propagation in multilayered anisotropic absorbing plates
,”
J. Acoust. Soc. Am.
95
,
1931
1941
(
1993
).
30.
T.
Pastureaud
,
V.
Laude
, and
S.
Ballandras
, “
Stable scattering matrix method for surface acoustic waves in piezoelectric multilayers
,”
Appl. Phys. Lett.
80
,
2544
2547
(
2002
).
31.
B.
Honein
,
A. M. B.
Braga
,
P.
Barbone
, and
G.
Hermann
, “
Wave propagation in piezoelectric layered media with some applications
,”
J. Intell. Mater. Syst. Struct.
2
,
542
557
(
1991
).
32.
S. I.
Rokhlin
and
L.
Wang
, “
Stable recursive algorithm for elastic wave propagation in layered anisotropic media: Stiffness matrix method
,”
J. Acoust. Soc. Am.
112
,
822
834
(
2002
).
33.
L.
Wang
and
S. I.
Rokhlin
, “
Stable reformulation of transfer matrix method for wave propagation in layered anisotropic media
,”
Ultrasonics
39
,
413
424
(
2001
).
34.
L.
Wang
and
S. I.
Rokhlin
, “
A compliance/stiffness matrix formulation of general Green’s function and effective permittivity for piezoelectric multilayers
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
51
,
453
463
(
2004
).
35.
L.
Wang
and
S. I.
Rokhlin
, “
Recursive geometric integrators for wave propagation in a functionally graded multilayered elastic medium
,”
J. Mech. Phys. Solids
52
,
2473
2506
(
2004
).
36.
H. F.
Tiersten
, “
Electroelastic interactions and the piezoelectric equations
,”
J. Acoust. Soc. Am.
70
,
1567
1576
(
1981
).
37.
H. F.
Tiersten
, “
Electroelastic interactions, biasing states, and precision crystal resonators
,”
J. Acoust. Soc. Am.
85
,
S7
S8
(
1989
).
38.
Z. B.
Kuang
, “
Propagation of Bleustein-Gulyaev waves in a pre-stressed layered piezoelectric structure
,”
Ultrasonics
41
,
397
405
(
2003
).
39.
J. F.
Havlice
,
W. L.
Bond
, and
L. B.
Wighton
, “
Elastic Poynting vector in piezoelectric medium
,”
IEEE Trans. Sonics Ultrason.
SU-17
(
1970
).
40.
Y.
Cho
and
K.
Yamanouchi
, “
Nonlinear, elastic, piezoelectric, electrostrictive, and dielectric constants of lithium niobate
,”
J. Appl. Phys.
61
,
875
887
(
1987
).
41.
P. N.
Keating
, “
Theory of the Third-Order Elastic Constants of Diamond-Like Ćrystals
,”
Phys. Rev.
149
,
674
678
(
1966
).
42.
P. J.
Shull
,
D. E.
Chimenti
, and
S. K.
Datta
, “
Elastic guided waves and the Floquet concept in periodically layered plates
,”
J. Acoust. Soc. Am.
95
,
99
108
(
1994
).
43.
C.
Baron
,
O.
Poncelet
, and
A.
Shuvalov
, “
Calculation of the velocity spectrum of the vertically inhomogeneous plates
,” WCU Symposium (
2003
).
You do not currently have access to this content.