This paper presents a computational model to simulate normal and impaired auditory-nerve (AN) fiber responses in cats. The model responses match physiological data over a wider dynamic range than previous auditory models. This is achieved by providing two modes of basilar membrane excitation to the inner hair cell (IHC) rather than one. The two modes are generated by two parallel filters, component 1 (C1) and component 2 (C2), and the outputs are subsequently transduced by two separate functions. The responses are then added and passed through the IHC low-pass filter followed by the IHC-AN synapse model and discharge generator. The C1 filter is a narrow-band, chirp filter with the gain and bandwidth controlled by a nonlinear feed-forward control path. This filter is responsible for low and moderate level responses. A linear, static, and broadly tuned C2 filter followed by a nonlinear, inverted and nonrectifying C2 transduction function is critical for producing transition region and high-level effects. Consistent with Kiang’s two-factor cancellation hypothesis, the interaction between the two paths produces effects such as the C1/C2 transition and peak splitting in the period histogram. The model responses are consistent with a wide range of physiological data from both normal and impaired ears for stimuli presented at levels spanning the dynamic range of hearing.

1.
Anderson
,
D. J.
,
Rose
,
J. E.
,
Hind
,
J. E.
, and
Brugge
,
J. F.
(
1971
). “
Temporal position of discharges in single auditory nerve fibers within the cycle of a sine-wave stimulus: Frequency and intensity effects
,”
J. Acoust. Soc. Am.
49
,
1131
1139
.
2.
Bondy
,
J.
,
Becker
,
S.
,
Bruce
,
I.
,
Trainor
,
L.
, and
Haykin
,
S.
(
2004
). “
A novel signal-processing strategy for hearing-aid design: Neurocompensation
,”
Signal Process.
84
,
1239
1253
.
3.
Brown
,
G. J.
, and
Cooke
,
M.
(
1994
). “
Computational auditory scene analysis
,”
Comput. Speech Lang.
8
,
297
336
.
4.
Bruce
,
I. C.
(
2004
). “
Physiological assessment of contrast-enhancing frequency shaping and multi-band compression in hearing aids
,”
Physiol. Meas
25
,
945
956
.
5.
Bruce
,
I. C.
,
Sachs
,
M. B.
, and
Young
,
E. D.
(
2003
). “
An auditory-periphery model of the effects of acoustic trauma on auditory nerve responses
,”
J. Acoust. Soc. Am.
113
,
369
388
.
6.
Cai
,
Y.
(
1995
). “
Temporal responses of the auditory-nerve fibers to single-tone and two-tone stimuli: Experimental and modeling studies
,” Ph.D. thesis,
University of Wisconsin-Madison
.
7.
Cai
,
Y.
, and
Geisler
,
C. D.
(
1996
). “
Temporal patterns of the responses of auditory-nerve fibers to low-frequency tones
,”
Hear. Res.
96
,
83
93
.
8.
Carney
,
L. H.
(
1993
). “
A model for the responses of low-frequency auditory-nerve fibers in cat
,”
J. Acoust. Soc. Am.
93
,
401
417
.
9.
Carney
,
L. H.
(
1994
). “
Spatiotemporal encoding of sound level: Models for normal encoding and recruitment of loudness
,”
Hear. Res.
76
,
31
44
.
10.
Carney
,
L. H.
,
McDuffy
,
M. J.
, and
Shekhter
,
I.
(
1999
). “
Frequency glides in the impulse responses of auditory-nerve fibers
,”
J. Neurophysiol.
105
,
2384
2391
.
11.
Carney
,
L. H.
, and
Yin
,
T. C. T.
(
1988
). “
Temporal coding of resonances by low-frequency auditory nerve fibers: Single-fiber responses and a population model
,”
J. Neurophysiol.
60
,
1653
1677
.
12.
Cheatham
,
M. A.
, and
Dallos
,
P.
(
1989
). “
Two-tone suppression in inner hair responses
,”
Hear. Res.
40
,
187
196
.
13.
Cheatham
,
M. A.
, and
Dallos
,
P.
(
1998
). “
The level dependence of response phase: Observations from cochlear hair cells
,”
J. Acoust. Soc. Am.
104
,
356
369
.
14.
Cooper
,
N. P.
, and
Rhode
,
W. S.
(
1992
). “
Basilar membrane mechanics in the hook region of cat and guinea-pig cochlae: Sharp tuning and nonlinarity in the absence of baseline position shifts
,”
Hear. Res.
63
,
163
190
.
15.
Cooper
,
N. P.
, and
Rhode
,
W. S.
(
1997
). “
Mechanical responses to two-tone distortion products in the apical and basal turns of the mammalian cochlea
,”
J. Neurophysiol.
78
,
261
270
.
16.
Dallos
,
P.
(
1985
). “
Response characteristics of mammalian cochlear hair cells
,”
J. Neurosci.
5
,
1591
1608
.
17.
Dallos
,
P.
(
1986
). “
Neurobiology of cochlear inner and outer hair cells: Intracellular recordings
,”
Hear. Res.
22
,
185
198
.
18.
de Boer
,
E.
, and
de Jongh
,
H. R.
(
1978
). “
On cochlear encoding: Potentialities and limitations of the reverse correlation technique
,”
J. Acoust. Soc. Am.
63
,
115
135
.
19.
de Boer
,
E.
, and
Kuyper
,
P.
(
1968
). “
Triggered correlation
,”
IEEE Trans. Biomed. Eng.
15
,
169
179
.
20.
de Boer
,
E.
, and
Nuttall
,
A. N.
(
1997
). “
The mechanical waveform of the basilar membrane. I. Frequency modulations (glides) in impulse responses and cross-correlation functions
,”
J. Acoust. Soc. Am.
101
,
3583
3592
.
21.
de Boer
,
E.
, and
Viergever
,
M. A.
(
1982
). “
Validity of the Liouville-Green (or WKB) method for cochlear mechanics
,”
Hear. Res.
8
,
131
155
.
22.
Delgutte
,
B.
(
1990
). “
Two-tone rate suppression in auditory-nerve fibers: Dependence on suppressor frequency and level
,”
Hear. Res.
49
,
225
246
.
23.
Deng
,
L.
, and
Geisler
,
C. D.
(
1987
). “
A composite auditory model for processing speech sounds
,”
J. Acoust. Soc. Am.
82
,
2001
2012
.
24.
Evans
,
E. F.
(
1981
). “
The dynamic range problem: Place and timing coding at the level of the cochlear nerve and nucleus
,” in
Neuronal Mechanisms of Hearing
, edited by
J.
Syka
and
L.
Aitkin
(
Plenum
,
New York
), pp.
69
95
.
25.
Geisler
,
C. D.
, and
Rhode
,
W. S.
(
1982
). “
The phases of basilar-membrane vibrations
,”
J. Acoust. Soc. Am.
71
,
1201
1203
.
26.
Ghitza
,
O.
(
1988
). “
Temporal non-place information in the auditory-nerve firing patterns as a front-end for speech recognition in a noisy environment
,”
J. Phonetics
16
,
109
123
.
27.
Gifford
,
M. L.
, and
Guinan
,
J. J.
, Jr.
(
1983
). “
Effects of crossed-olivocochlear bundle stimulation on cat auditory-nerve fiber response to tones
,”
J. Acoust. Soc. Am.
74
,
115
123
.
28.
Giguère
,
C.
, and
Woodland
,
P. C.
(
1994
). “
A computational model of the auditory periphery for speech and hearing research. I. Ascending path
,”
J. Acoust. Soc. Am.
95
,
331
342
.
29.
Goblick
,
T. J.
, and
Pfeiffer
,
R. R.
(
1969
). “
Time-domain measurements of cochlear nonlinearities using combination-click stimuli
,”
J. Acoust. Soc. Am.
46
,
924
938
.
30.
Goldstein
,
J. L.
(
1990
). “
Modeling rapid waveform compression on the basilar membrane as multiple-bandpass-nonlinearity filtering
,”
Hear. Res.
49
,
39
60
.
31.
Goldstein
,
J. L.
(
1995
). “
Relations among compression, suppression, and combination tones in mechanical responses of the basilar membrane: Data and MBPNL model
,”
Hear. Res.
89
,
52
68
.
31.
Heinz
,
M. G.
(private communication).
32.
Heinz
,
M. G.
, and
Young
,
E. D.
(
2004
). “
Response growth with sound level in auditory-nerve fibers after noise-induced hearing loss
,”
J. Neurophysiol.
91
,
784
795
.
33.
Hewitt
,
M. J.
, and
Meddis
,
R.
(
1992
). “
Regularity of cochlear neucleus stellate cells: A computational modeling study
,”
J. Acoust. Soc. Am.
93
,
3390
3399
.
34.
Holley
,
M. C.
(
1996
). “
Outer hair cell motility
,” in
The Cochlea
, edited by
P.
Dallos
,
A. N.
Popper
, and
R. R.
Fay
(
Springer
,
New York
), pp.
386
434
.
35.
Johnson
,
D.
(
1980
). “
The relationship between spike rate and synchrony in responses to auditory-nerve fibers to single tones
,”
J. Acoust. Soc. Am.
68
,
1115
1122
.
36.
Kates
,
J. M.
(
1991
). “
A time-domain digital cochlear model
,”
IEEE Trans. Signal Process.
39
,
2573
2592
.
37.
Kates
,
J. M.
(
1995
). “
Two-tone suppression in a cochlear model
,”
IEEE Trans. Speech Audio Process.
3
,
396
406
.
38.
Kiang
,
N. Y.
,
Liberman
,
M. C.
,
Sewell
,
W. F.
, and
Guinan
,
J. J.
, Jr.
(
1986
). “
Single unit clues to cochlear mechanisms
,”
Hear. Res.
22
,
171
182
.
39.
Kiang
,
N. Y.-S.
(
1984
). “
Peripheral neural processing of auditory information
,” in
Handbook of Physiology, Section 1: The Nervous System
, edited by
J. M.
Brookhart
and
V. B.
Mountcastle
(
American Physiological Society
,
Bethesda, MD
), Vol.
III
Pt. 2, pp.
639
674
.
40.
Kiang
,
N. Y.-S.
(
1990
). “
Curious oddments of auditory-nerve studies
,”
Hear. Res.
49
,
1
16
.
41.
Kiang
,
N. Y.-S.
,
Baer
,
T.
,
Marr
,
E. M.
, and
Demont
,
D.
(
1969
). “
Discharge rates of single auditory-nerve fibers as a function of tone level
,”
J. Acoust. Soc. Am.
46
,
106
.
42.
Kiang
,
N. Y.-S.
,
Liberman
,
M. C.
, and
Levine
,
R. A.
(
1976
). “
Auditory-nerve activity in cats exposed to ototoxic drugs and high-intensity sounds
,”
Ann. Otol. Rhinol. Laryngol.
85
,
752
768
.
43.
Kiang
,
N. Y.-S.
, and
Moxon
,
E. C.
(
1972
). “
Physiological considerations in artificial stimulation of the inner ear
,”
Ann. Otol. Rhinol. Laryngol.
81
,
714
731
.
44.
Kiang
,
N. Y.-S.
,
Watanabe
,
T.
,
Thomas
,
E. C.
, and
Clark
,
L. F.
(
1965
). “
Discharge patterns of single fibers in the cat’s auditory nerve
,”
Res. Monogr. No. 35
(
MIT
, Cambridge, MA).
45.
Liberman
,
M. C.
(
1978
). “
Auditory nerve response from cats raised in a low noise chamber
,”
J. Acoust. Soc. Am.
63
,
442
455
.
46.
Liberman
,
M. C.
(
1982
). “
The cochlear frequency map for the cat: Labeling auditory-nerve fibers of known characteristic frequency
,”
J. Acoust. Soc. Am.
72
,
1441
1449
.
47.
Liberman
,
M. C.
(
1984
). “
Single-neuron labeling and chronic cochlear pathology. I. Threshold shift and characteristic-frequency shift
,”
Hear. Res.
16
,
33
41
.
48.
Liberman
,
M. C.
, and
Dodds
,
L. W.
(
1984
). “
Single-neuron labeling and chronic cochlear pathology. III. Stereocilia damage and alterations of threshold tuning curves
,”
Hear. Res.
16
,
55
74
.
49.
Liberman
,
M. C.
, and
Kiang
,
N. Y.-S.
(
1984
). “
Single-neuron labeling and chronic cochlear pathology. IV. Stereocilia damage and alterations in rate- and phase-level functions
,”
Hear. Res.
16
,
75
90
.
50.
Liberman
,
M. C.
, and
Mulroy
,
M. J.
(
1982
). “
Acute and chronic effects of acoustic trauma: Cochlear pathology and auditory nerve pathophysiology
,” in
New Perspectives on Noise-Induced Hearing Loss
, edited by
R. P.
Hamernik
,
D.
Henderson
, and
R.
Salvi
(
Raven
,
New York
), pp.
105
135
.
51.
Lin
,
T.
(
1994
), “
Quantitative modeling of nonlinear auditory-nerve responses as two-factor interactions
,” Ph.D. thesis,
Sever Institute of Technology, Washington University
.
52.
Lin
,
T.
, and
Goldstein
,
J. L.
(
1995
). “
Quantifying 2-factor phase relations in non-linear responses from low characteristic-frequency auditory-nerve fibers
,”
Hear. Res.
90
,
126
138
.
53.
Lin
,
T.
, and
Guinan
,
J. J.
, Jr.
(
2000
). “
Auditory-nerve-fiber responses to high-level clicks: Interference patterns indicate that excitation is due to the combination of multiple drives
,”
J. Acoust. Soc. Am.
107
,
2615
2630
.
54.
Lin
,
T.
, and
Guinan
,
J. J.
, Jr.
(
2004
). “
Time-frequency analysis of auditory-nerve-fiber and basilar-membrane click responses reveal glide irregularities and non-characteristic-frequency skirts
,”
J. Acoust. Soc. Am.
116
,
405
416
.
55.
Lopez-Poveda
,
E. A.
(
2005
). “
Spectral processing by the peripheral auditory system: Facts and models
,”
Int. Rev. Neurobiol.
70
,
7
48
.
56.
Matthews
,
J. W.
(
1983
). “
Modeling reverse middle ear transmission of acoustic distortion signals
,” in
Mechanics of Hearing: Proceedings of the IUTAM/ICA Symposium
, edited by
E.
de Boer
and
M. A.
Viergever
(
Delft University Press
,
Delft
), pp.
11
18
.
57.
Meddis
,
R.
,
O’Mard
,
L. P.
, and
Lopez-Poveda
,
E. A.
(
2001
). “
A computational algorithm for computing nonlinear auditory frequency selectivity
,”
J. Acoust. Soc. Am.
109
,
2852
2861
.
58.
Miller
,
R. L.
,
Calhoun
,
B. M.
, and
Young
,
E. D.
(
1999
). “
Contrast enhancement improves the representation of /ε/-like vowels in the hearing-impaired auditory nerve
,”
J. Acoust. Soc. Am.
106
,
2693
2708
.
59.
Miller
,
R. L.
,
Schilling
,
J. R.
,
Franck
,
K. R.
, and
Young
,
E. D.
(
1997
). “
Effects of acoustic trauma on the representation of the vowel /ε/ in cat auditory nerve fibers
,”
J. Acoust. Soc. Am.
101
,
3602
3616
.
60.
Møller
,
A. R.
(
1977
). “
Frequency selectivity of single auditory-nerve fibers in response to broad-band noise stimuli
,”
J. Acoust. Soc. Am.
62
,
135
142
.
61.
Mountain
,
D. C.
, and
Cody
,
A. R.
(
1999
). “
Multiple modes of inner hair cell stimulation
,”
Hear. Res.
132
,
1
14
.
62.
Narayan
,
S. S.
,
Temchin
,
A. N.
,
Recio
,
A.
, and
Ruggero
,
M. A.
(
1998
). “
Frequency tuning of basilar membrane and auditory nerve fibers in the same cochleae
,”
Science
282
,
1882
1884
.
63.
Nuttall
,
A. L.
, and
Dolan
,
D. F.
(
1993
). “
Two-tone suppression of inner hair cell and basilar membrane responses in the guinea pig
,”
J. Acoust. Soc. Am.
94
,
3511
3514
.
64.
Palmer
,
A. R.
, and
Russell
,
I. J.
(
1986
). “
Phase-locking in the cochlear nerve of the guinea-pig and its relation to the receptor potential of inner hair-cells
,”
Hear. Res.
24
,
1
15
.
65.
Patuzzi
,
R. B.
(
1996
). “
Cochlear micromechanics and macromechanics
,” in
The Cochlea
, edited by
P.
Dallos
,
A. N.
Popper
, and
R. R.
Fay
(
Springer
,
New York
), pp.
186
257
.
66.
Patuzzi
,
R. B.
, and
Robertson
,
D.
(
1988
). “
Tuning in the mammalian cochlea
,”
Physiol. Rev.
68
,
1009
1082
.
67.
Peake
,
W. T.
,
Rosowski
,
J. J.
, and
Lynch
,
T. J.
, III
(
1992
). “
Middle-ear transmission: Acoustic versus ossicular coupling in cat and human
,”
Hear. Res.
57
,
245
268
.
68.
Recio
,
A.
,
Narayan
,
S. S.
, and
Ruggero
,
M. A.
(
1997
). “
Wiener-kernel analysis of basilar-membrane response to white noise
,” in
Diversity in Auditory Mechanics
, edited by
E. R.
Lewis
,
G. R.
Long
,
R. F.
Lyon
,
P. M.
Narins
,
C. R.
Steele
, and
E.
Hecht-Poinar
(
World Scientific
,
Singapore
), pp.
325
331
.
69.
Recio
,
A.
,
Rich
,
N. C.
,
Narayan
,
S. S.
, and
Ruggero
,
M. A.
(
1998
). “
Basilar-membrane responses to clicks at the base of the chichilla cochlea
,”
J. Acoust. Soc. Am.
103
,
1972
1989
.
70.
Rhode
,
W. S.
(
1971
). “
Observations of the vibration of the basilar membrane in squirrel monkeys using the mössbauer technique
,”
J. Acoust. Soc. Am.
49
,
1218
1231
.
71.
Rhode
,
W. S.
(
1973
). “
An investigation of postmortem cochlear mechanics using the Mössbauer effects
,” in
Basic Mechanisms in Hearing
, edited by
A. R.
Møller
(
Academic
,
New York
), pp.
49
63
.
72.
Rhode
,
W. S.
, and
Recio
,
A.
(
2000
). “
Study of mechanical motions in the basal region of the chinchilla cochlea
,”
J. Acoust. Soc. Am.
107
,
3317
3332
.
73.
Robert
,
A.
, and
Eriksson
,
J. L.
(
1999
). “
A composite model of the auditory periphery for simulating responses to complex sounds
,”
J. Acoust. Soc. Am.
106
,
1852
1864
.
74.
Robertson
,
D.
(
1982
). “
Effects of acoustic trauma on stereocilia structure and spiral ganglion cell tuning properties in the guinea pig cochlea
,”
Hear. Res.
7
,
55
74
.
75.
Robles
,
L.
,
Rhode
,
W. S.
, and
Geisler
,
C. D.
(
1976
). “
Transient response of the basilar membrane measured in squirrel monkeys using the mössbauer effect
,”
J. Acoust. Soc. Am.
59
,
926
939
.
76.
Robles
,
L.
, and
Ruggero
,
M. A.
(
2001
). “
Mechanics of the mammalian cochlea
,”
Physiol. Rev.
81
,
1305
1352
.
77.
Ruggero
,
M. A.
, and
Rich
,
N. C.
(
1983
). “
Chinchilla auditory-nerve responses to low-frequency toens
,”
J. Acoust. Soc. Am.
73
,
2096
2108
.
78.
Ruggero
,
M. A.
, and
Rich
,
N. C.
(
1989
). “
Peak splitting: Intensity effects in cochlear afferent responses to low frequency tones
,” in
Cochlear Mechanisms: Structure, Function and Models
, edited by
J. P.
Wilson
and
D. T.
Kemp
(
Plenum
,
New York
), pp.
259
267
.
79.
Ruggero
,
M. A.
,
Rich
,
N. C.
,
Recio
,
A.
,
Narayan
,
S. S.
, and
Robles
,
L.
(
1997
). “
Basilar-membrane responses to tones at the base of the chinchilla cochlea
,”
J. Acoust. Soc. Am.
101
,
2151
2163
.
80.
Ruggero
,
M. A.
,
Rich
,
N. C.
,
Shivapuja
,
B. G.
, and
Temchin
,
A. N.
(
1996
). “
Auditory-nerve responses to low-frequency tones: Intensity dependence
,”
Aud. Neurosci.
2
,
159
185
.
81.
Russell
,
I. J.
, and
Sellick
,
P. M.
(
1978
). “
Intracellular studies of hair cells in the mammalian cochlea
,”
J. Physiol. (London)
284
,
261
290
.
82.
Sachs
,
M. B.
,
Winslow
,
R. L.
, and
Sokolowski
,
B. H. A.
(
1989
). “
A computational model for rate-level functions from cat auditory-nerve fibers
,”
Hear. Res.
41
,
61
70
.
83.
Salvi
,
R.
,
Perry
,
J.
,
Hamernik
,
R. P.
, and
Henderson
,
D.
(
1982
). “
Relationships between cochlear pathologies and auditory nerve and behavioral responses following acoustic trauma
,” in
New Perspectives on Noise-Induced Hearing Loss
, edited by
R. P.
Hamernik
,
D.
Henderson
, and
R.
Salvi
(
Raven
,
New York
), pp.
165
188
.
84.
Schmiedt
,
R. A.
,
Zwislocki
,
J. J.
, and
Hamernik
,
R. P.
(
1980
). “
Effects of hair cell lesions on responses of cochlear nerve fibers. I. Lesions, tuning curves, two-tone inhibition, and responses to trapezoidal-wave patterns
,”
J. Neurophysiol.
43
,
1367
1389
.
85.
Schoonhoven
,
R.
,
Keijzer
,
J.
,
Versnel
,
H.
, and
Prijs
,
V. F.
(
1994
). “
A dual filter model describing single-fiber responses to clicks in the normal and noise-damaged cochlea
,”
J. Acoust. Soc. Am.
95
,
2104
2121
.
86.
Sellick
,
P. M.
,
Patuzzi
,
R.
, and
Johnstone
,
B. M.
(
1982
). “
Measurement of basilar membrane motion in the guinea pig using Mössbaeur technique
,”
J. Acoust. Soc. Am.
72
,
131
141
.
87.
Sewell
,
W. F.
(
1984a
). “
The effects of furosemide on the endocochlear potential and auditory-nerve fiber tuning curves
,”
Hear. Res.
14
,
305
314
.
88.
Sewell
,
W. F.
(
1984b
). “
Furosemide selectively reduces one component in rate-level functions from auditory-nerve fibers
,”
Hear. Res.
15
,
69
72
.
89.
Shera
,
C. A.
(
2001
). “
Frequency glides in click responses of the basilar membrane and auditory nerve: Their scaling behavior and origin in traveling-wave dispersion
,”
J. Acoust. Soc. Am.
109
,
2023
2034
.
90.
Sumner
,
C. J.
,
O’Mard
,
L. P.
,
Lopez-Poveda
,
E. A.
, and
Meddis
,
R.
(
2003
). “
A non-linear filter-bank model of the guinea-pig cochlear nerve: Rate responses
,”
J. Acoust. Soc. Am.
113
,
3264
3274
.
91.
Tan
,
Q.
, and
Carney
,
L. H.
(
2003
). “
A phenomenological model for the responses of the auditory-nerve fibers. II. Nonlinear tuning with a frequency glide
,”
J. Acoust. Soc. Am.
114
,
2007
2020
.
92.
Tchorz
,
J.
, and
Kollmeier
,
B.
(
1999
). “
A model of auditory perception as a front end for automatic speech recognition
,”
J. Acoust. Soc. Am.
106
,
2040
2050
.
93.
van der Heijden
,
M.
, and
Joris
,
P. X.
(
2003
). “
Cochlear phase and amplitude retrieved from the auditory-nerve at arbitrary frequencies
,”
J. Neurosci.
23
,
9194
9198
.
94.
Westerman
,
L. A.
, and
Smith
,
R. L.
(
1988
). “
A diffusion model of the transient response of the cochlear inner hair cell synapse
,”
J. Acoust. Soc. Am.
83
,
2266
2276
.
95.
Wilson
,
B. S.
,
Schatzer
,
R.
,
Lopez-Poveda
,
E. A.
,
Sun
,
X.
,
Lawson
,
D. T.
, and
Wolford
,
R. D.
(
2005
). “
Two new directions in speech processor design for cochlear implants
,”
Ear Hear.
26
,
73S
81S
.
96.
Wong
,
J. C.
(
1998
). “
Nonlinearities in the representation of the vowel /ε/ in cat auditory nerve at sound levels near 100dB SPL
,” Master’s thesis,
Johns Hopkins University
.
97.
Wong
,
J. C.
,
Miller
,
R. L.
,
Calhoun
,
B. M.
,
Sachs
,
M. B.
, and
Young
,
E. D.
(
1998
). “
Effects of high sound levels on responses to the vowel /ε/ in cat auditory nerve
,”
Hear. Res.
123
,
61
77
.
98.
Zhang
,
X.
,
Heinz
,
M. G.
,
Bruce
,
I. C.
, and
Carney
,
L. H.
(
2001
). “
A phenomenological model for the responses of auditory-nerve fibers. I. Nonlinear tuning with compression and suppression
,”
J. Acoust. Soc. Am.
109
,
648
670
.
You do not currently have access to this content.