To better understand how the auditory system extracts speech signals in the presence of noise, discrimination thresholds for the second formant frequency were predicted with simulations of auditory-nerve responses. These predictions employed either average-rate information or combined rate and timing information, and either populations of model fibers tuned across a wide range of frequencies or a subset of fibers tuned to a restricted frequency range. In general, combined temporal and rate information for a small population of model fibers tuned near the formant frequency was most successful in replicating the trends reported in behavioral data for formant-frequency discrimination. To explore the nature of the temporal information that contributed to these results, predictions based on model auditory-nerve responses were compared to predictions based on the average rates of a population of cross-frequency coincidence detectors. These comparisons suggested that average response rate (count) of cross-frequency coincidence detectors did not effectively extract important temporal information from the auditory-nerve population response. Thus, the relative timing of action potentials across auditory-nerve fibers tuned to different frequencies was not the aspect of the temporal information that produced the trends in formant-frequency discrimination thresholds.

1.
Carney
,
L. H.
,
Heinz
,
M. G.
,
Evilsizer
,
M. E.
,
Gilkey
,
R. H.
, and
Colburn
,
H. S.
(
2002
). “
Auditory phase opponency: A temporal model for masked detection at low frequencies
,”
Acust. Acta Acust.
88
,
334
347
.
2.
Colburn
,
H. S.
(
1969
). “
Some physiological limitations on binaural performance
,” Ph.D. dissertation,
Massachusetts Institute of Technology
, Cambridge, MA.
3.
Colburn
,
H. S.
(
1977
). “
Theory of binaural interaction based on auditory-nerve data. II. Detection of tones in noise. Supplementary material
,” AIP Document No. PAPS JASMA-61–525–98.
4.
Colburn
,
H. S.
,
Carney
,
L. H.
, and
Heinz
,
M. G.
(
2003
). “
Quantifying the information in auditory-nerve responses for level discrimination
,”
J. Assoc. Res. Otolaryngol.
04
,
294
311
.
5.
Dau
,
T.
,
Kollmeier
,
B.
, and
Kohlrausch
,
A.
(
1997
). “
Modeling auditory processing of amplitude modulation. I. Detection and masking with narrow-band carriers
,”
J. Acoust. Soc. Am.
102
,
2892
2905
.
6.
Delgutte
,
B.
, and
Kiang
,
N. Y.-S.
(
1984a
). “
Speech coding in the auditory nerve: I. Vowel-like sounds
,”
J. Acoust. Soc. Am.
75
,
866
878
.
7.
Delgutte
,
B.
, and
Kiang
,
N. Y.-S.
(
1984b
). “
Speech coding in the auditory nerve: V. Vowels in background noise
J. Acoust. Soc. Am.
75
,
908
918
.
8.
Flanagan
,
J. L.
(
1955
). “
A difference limen for vowel formant frequency
,”
J. Acoust. Soc. Am.
27
,
613
617
.
9.
Hawks
,
J. W.
(
1994
). “
Difference limens for formant patterns of vowel sounds
,”
J. Acoust. Soc. Am.
95
,
1074
1084
.
10.
Heinz
,
M. G.
(
2000
). “
Quantifying the effects of the cochlear amplifier on temporal and average-rate information in the auditory nerve
,” Ph.D. dissertation,
Massachusetts Institute of Technology
, Cambridge, MA.
11.
Heinz
,
M. G.
,
Colburn
,
H. S.
, and
Carney
,
L. H.
(
2001a
). “
Evaluating auditory performance limits: I. One-parameter discrimination using a computational model for the auditory nerve
,”
Neural Comput.
13
,
2273
2316
.
12.
Heinz
,
M. G.
,
Colburn
,
H. S.
, and
Carney
,
L. H.
(
2001b
). “
Rate and timing cues associated with the cochlear amplifier: Level discrimination based on monaural cross-frequency coincidence detection
,”
J. Acoust. Soc. Am.
110
,
2065
2084
.
13.
Heinz
,
M. G.
,
Colburn
,
H. S.
, and
Carney
,
L. H.
(
2002
). “
Quantifying the implications of nonlinear cochlear tuning for auditory-filter estimates
,”
J. Acoust. Soc. Am.
111
,
996
1011
.
14.
Hienz
,
R. D.
,
Aleszczyk
,
C. M.
, and
May
,
B. J.
(
1996
). “
Vowel discrimination in cats: Acquisition, effects of stimulus level, and performance in noise
,”
J. Acoust. Soc. Am.
99
,
3656
3668
.
15.
Hienz
,
R. D.
,
Stiles
,
P.
, and
May
,
B. J.
(
1998
). “
Effects of bilateral olivocochlear lesions on vowel formant discrimination in cats
,”
Hear. Res.
116
,
10
20
.
16.
Johnson
,
D. H.
(
1980
). “
The relationship between spike rate and synchrony in responses of auditory-nerve fibers to single tones
,”
J. Acoust. Soc. Am.
68
,
1115
1122
.
17.
Joris
,
P. X.
, and
Yin
,
T. C. T.
(
1992
). “
Responses to amplitude-modulated tones in the auditory nerve of the cat
,”
J. Acoust. Soc. Am.
91
,
215
232
.
18.
Keithley
,
E. M.
, and
Schreiber
,
R. C.
(
1987
). “
Frequency map of the spiral ganglion of cat
,”
J. Acoust. Soc. Am.
81
,
1036
1042
.
19.
Kewley-Port
,
D.
, and
Watson
,
C. S.
(
1994
). “
Formant-frequency discrimination for isolated English vowels
,”
J. Acoust. Soc. Am.
95
,
485
496
.
20.
Kewley-Port
,
D.
,
Li
,
X.
,
Zheng
,
Y.
, and
Neel
,
A.
(
1996
). “
Fundamental frequency effects on thresholds for vowel formant discrimination
,”
J. Acoust. Soc. Am.
100
,
2462
2470
.
21.
Klatt
,
D. H.
(
1980
). “
Software for a cascade/parallel formant synthesizer
,”
J. Acoust. Soc. Am.
67
,
971
995
.
22.
Lawson
,
J. L.
, and
Uhlenbeck
,
G. E.
(
1950
).
Threshold Signals
, Vol.
24
of
Radiation Laboratory Series
(
McGraw-Hill
,
New York
).
23.
Liberman
,
M. C.
(
1978
). “
Auditory-nerve response fromcats raised in a low-noise chamber
,”
J. Acoust. Soc. Am.
63
,
442
455
.
24.
Liberman
,
M. C.
(
1982
). “
The cochlear frequency map for cat: Labeling auditory-nerve fibers of known characteristic frequency
,”
J. Acoust. Soc. Am.
72
,
1441
1449
.
25.
Liu
,
C.
, and
Kewley-Port
,
D.
(
2004
). “
Formant discrimination in noise for isolated vowels
,”
J. Acoust. Soc. Am.
116
,
3119
3129
.
26.
Lyzenga
,
J.
, and
Horst
,
J. W.
(
1995
). “
Frequency discrimination of bandlimited harmonic complexes related to vowel formants
,”
J. Acoust. Soc. Am.
98
,
1943
1955
.
27.
Mermelstein
,
P.
(
1978
). “
Difference limens for formant frequencies of steady-state and consonant-bound vowels
,”
J. Acoust. Soc. Am.
63
,
572
580
.
28.
Miller
,
M. I.
,
Barta
,
P. E.
, and
Sachs
,
M. B.
(
1987
). “
Strategies for the representation of a tone in background noise in the temporal aspects of the discharge patterns of auditory-nerve fibers
,”
J. Acoust. Soc. Am.
81
,
665
679
.
29.
Rhode
,
W. S.
,
Geisler
,
C. D.
, and
Kennedy
,
D. K.
(
1978
). “
Auditory-nerve fiber responses to wide-band noise and tone combinations
,”
J. Neurophysiol.
41
,
692
704
.
30.
Sachs
,
M. B.
, and
Young
,
E. D.
(
1979
). “
Encoding of steady-state vowels in the auditory nerve: Representation in terms of discharge rate
,”
J. Acoust. Soc. Am.
66
,
470
479
.
31.
Sachs
,
M. B.
,
Voigt
,
H. F.
, and
Young
,
E. D.
(
1983
). “
Auditory-nerve representation of vowels in background noise
,”
J. Neurophysiol.
50
,
27
45
.
32.
Siebert
,
W. M.
(
1965
). “
Some implication of the stochastic behavior of primary auditory neurons
,”
Kybernetika
2
,
206
215
.
33.
Siebert
,
W. M.
(
1968
). “
Stimulus transformation in the peripheral auditory system
,” in
Recognizing Patterns
, edited by
P. A.
Kolers
and M.
Eden
(
MIT
,
Cambridge, MA
), pp.
104
133
.
34.
Siebert
,
W. M.
(
1970
). “
Frequency discrimination in the auditory system: place or periodicity mechanisms?
Proc. IEEE
58
,
723
730
.
35.
Smith
,
R. L.
, and
Brachman
,
M. L.
(
1980
). “
Response modulation of auditory-nerve fibers by AM stimuli: Effects of average intensity
,”
Hear. Res.
2
,
123
133
.
36.
Srulovicz
,
P.
, and
Goldstein
,
J. L.
(
1983
). “
The central spectrum: A synthesis of auditory-nerve timing and place cues in monaural communication of frequency spectrum
,”
J. Acoust. Soc. Am.
73
,
1266
1276
.
37.
Tan
,
Q.
(
2003
). “
Computational and statistical analysis of auditory peripheral processing for vowel-like signals
,” Ph.D. dissertation,
Boston University
.
38.
Tan
,
Q.
, and
Carney
,
L. H.
(
2003
). “
A phenomenological model for the responses of auditory-nerve fibers: II. Nonlinear tuning with a frequency glide
,”
J. Acoust. Soc. Am.
114
,
2007
2020
.
39.
Tan
,
Q.
, and
Carney
,
L. H.
(
2005
). “
Encoding of vowel-like sounds in the auditory nerve: Model predictions of discrimination performance
,”
J. Acoust. Soc. Am.
117
,
1210
1222
.
40.
Whitfield
,
I. C.
(
1967
).
The Auditory Pathway
(
Edward Arnold
,
London
).
41.
Wier
,
C. C.
,
Jesteadt
,
W.
, and
Green
,
D. M.
(
1977
). “
Frequency discrimination as a function of frequency and sensation level
,”
J. Acoust. Soc. Am.
61
,
178
184
.
42.
Young
,
E. D.
, and
Barta
,
P. E.
(
1986
). “
Rate responses of auditory-nerve fibers in noise near masked threshold
,”
J. Acoust. Soc. Am.
79
,
426
442
.
43.
Young
,
E. D.
, and
Sachs
,
M. B.
(
1979
). “
Representation of steady-state vowels in the temporal aspects of the discharge patterns of populations of auditory-nerve fibers
,”
J. Acoust. Soc. Am.
66
,
1381
1403
.

Supplementary Material

You do not currently have access to this content.