The stability of inkjet printers is a major requirement for high-quality-printing. However, in piezo-driven inkjet printheads, air entrapment can lead to malfunctioning of the jet formation. The piezoactuator is employed to actively monitor the channel acoustics and to identify distortions at an early stage. Modifications of the response of the piezoactuator indicate entrapped air bubbles and these allow us to investigate them. When we employ the signal as a trigger for high-speed imaging, we can visualize the consequences of the entrained bubbles on the droplet formation. Two mechanisms are found to cause air entrapment: First, a distorted droplet formation caused by small particles, and, second, an accumulation of ink on the nozzle plate, which favors void formation once the meniscus is pulled back.

1.
H. P.
Le
, “
Progress and trends in ink-jet printing technology
,”
J. Imaging Sci. Technol.
42
,
49
(
1998
).
2.
D. B.
Bogy
and
F. E.
Talke
, “
Experimental and theoretical study of wave propagation phenomena in drop-on-demand ink jet devices
,”
IBM J. Res. Dev.
28
,
314
320
(
1984
).
3.
J. M.
Meacham
,
M. J.
Varady
,
F. L.
Degertekin
, and
A. G.
Fedorov
, “
Droplet formation and ejection from a micromachined ultrasonic droplet generator: Visualization and scaling
,”
Phys. Fluids
17
,
100605
(
2005
).
4.
W. T.
Berggren
,
M. S.
Westphall
, and
L. M.
Smith
, “
Single-pulse nanoelectrospray ionization
,”
Anal. Chem.
74
,
3443
(
2002
).
5.
C.-Y.
Lung
,
M. D.
Barnes
,
N.
Lermer
,
W. B.
Whitten
, and
J. M.
Ramsey
, “
Single-molecule analysis of ultradilute solutions with guided streams of 1-μm water droplets
,”
Appl. Opt.
38
,
1481
(
1999
).
6.
A. U.
Chen
and
O. A.
Basaran
, “
A new method for significantly reducing drop radius without reducing nozzle radius in drop-on-demand drop production
,”
Phys. Fluids
14
,
L1
(
2002
).
7.
S. A.
Elrod
,
B.
Hadimioglu
,
B. T.
Khuri-Yakub
,
E. G.
Rawson
,
E.
Richley
,
C. F.
Quate
,
N. N.
Mansour
, and
T. S.
Lundgren
, “
Nozzleless droplet formation with focused acoustic beams
,”
J. Appl. Phys.
65
,
3441
(
1989
).
8.
D.-Y.
Shin
,
P.
Grassia
, and
B.
Derby
, “
Oscillatory limited compressible fluid flow induced by the radial motion of a thick-walled piezoelectric tube
,”
J. Acoust. Soc. Am.
114
,
1314
1321
(
2003
).
9.
J. F.
Dijksman
, “
Hydro-acoustics of piezoelectrically driven ink-jet print heads
,”
Flow, Turbul. Combust.
61
,
211
237
(
1999
).
10.
J. F.
Dijksman
, “
Hydrodynamics of small tubular pumps
,”
J. Fluid Mech.
139
,
173
191
(
1984
).
11.
J. D.
Brock
,
I. M.
Cohen
,
I. P.
Ivanov
,
H. P.
Le
, and
J.
Roy
, “
Oscillations of an air bubble in an ink jet
,”
J. Imaging Sci. Technol.
10
,
127
129
(
1984
).
12.
N. P.
Hine
, “
Deaeration system for a high-performance drop-on-demand ink jet
,”
J. Imaging Technol.
17
,
223
227
(
1991
).
13.
C. E.
Brennen
,
Cavitation and Bubble Dynamics
(
Oxford University Press
, Oxford,
1995
).
14.
M. M.
Fyrillas
and
A. J.
Szeri
, “
Dissolution or growth of soluble spherical oscillating bubbles
,”
J. Fluid Mech.
277
,
381
407
(
1994
).
15.
S.
Hilgenfeldt
,
D.
Lohse
, and
M. P.
Brenner
, “
Phase diagrams for sonoluminiscescing bubbles
,”
Phys. Fluids
8
,
2808
2826
(
1996
).
16.
Flow-3D is CDF software developed by Flow Science Inc., Santa Fe, New Mexico.
17.
C. W.
Hirt
and
B. D.
Nichols
, “
Volume of Fluid (VOF) method for the dynamics of Free Boundaries
,”
J. Comput. Phys.
39
,
201
225
(
1981
).
18.
J.
Eggers
, “
Nonlinear dynamics and breakup of free-surface flow
,”
Rev. Mod. Phys.
69
,
865
929
(
1997
).
19.
H.
Wijshoff
, “
Free surface flow and acousto-elastic interaction in piezo inkjet
,”
Proceedings of NSTI Nanotech 2004 Conference
,
2004
, Vol.
2
, pp.
215
218
(http://www.flow3d.com/pdfs/bib2-04.pdf).
20.
X. M.
Chen
and
A.
Prosperetti
, “
Thermal processes in the oscillations of gas bubbles in tubes
,”
J. Acoust. Soc. Am.
104
,
1389
1398
(
1998
).
21.
H. N.
Oguz
and
A.
Prosperetti
, “
The natural frequency of oscillation of gas bubbles in tubes
,”
J. Acoust. Soc. Am.
103
,
3301
3308
(
1998
).
22.
X.
Geng
,
H.
Yuan
,
H. N.
Oguz
, and
A.
Prosperetti
, “
The oscillation of gas bubbles in tubes: Experimental results
,”
J. Acoust. Soc. Am.
106
,
674
681
(
1999
).
23.
J.
de Jong
 et al, in preparation (
2006
).
24.

In principle, the units of a(t) would be Nm2s; however, the signal is linearly converted into a voltage, which is measured in Volts. We decided to omit the units of a(t) in this paper.

You do not currently have access to this content.