The ability of psychoacoustic models to predict listeners’ performance depends on two key stages: preprocessing and the generation of a decision variable. The goal of the current study was to determine the perceptually relevant decision variables in masked amplitude-modulation detection tasks in which the modulation depth of the masker was systematically varied. Potential cues were made unreliable by roving the overall modulation depth from trial to trial or were reduced in salience by equalizing the envelope energy of the standard and target after the signal was added. Listeners’ performance was significantly degraded in both paradigms compared to the baseline (fixed-level modulation masker) condition, which was similar to those used in previous studies of masking in the envelope-frequency domain. Although this observation was broadly consistent with a simple long-term envelope power-spectrum model, there were several aspects of the data that were not. For example, the steep rate of change in threshold with masker depth and the fact that an optimal amount of envelope noise could enhance performance were not predicted by decision variables calculated directly from the stimulus envelope. A physiologically based processing model suggested a realistic nonlinear mechanism that could give rise to these second-order features of the data.

1.
Bacon
,
S. P.
, and
Grantham
,
D. W.
(
1989
). “
Modulation masking: Effects of modulation frequency, depth, and phase
,”
J. Acoust. Soc. Am.
85
,
2575
2580
.
2.
Bibikov
,
N. G.
(
2002
). “
Addition of noise enhances neural synchrony to amplitude-modulated sounds in the frog’s midbrain
,”
Hear. Res.
173
,
21
38
.
3.
Chatterjee
,
M.
, and
Robert
,
M. E.
(
2001
). “
Noise enhances modulation sensitivity in cochlear implant listeners: stochastic resonance in a prosthetic sensory system?
,”
J. Assoc. Res. Otolaryngol.
2
,
159
171
.
4.
Dai
,
H.
(
1995
). “
On measuring psychometric functions: A comparison of the constant-stimulus and adaptive up-down methods
,”
J. Acoust. Soc. Am.
98
,
3135
3139
.
5.
Dau
,
T.
,
Kollmeier
,
B.
, and
Kohlrausch
,
A.
(
1997a
). “
Modeling auditory processing of amplitude modulation. I. Detection and masking with narrow-band carriers
,”
J. Acoust. Soc. Am.
102
,
2892
2905
.
6.
Dau
,
T.
,
Kollmeier
,
B.
, and
Kohlrausch
,
A.
(
1997b
). “
Modeling auditory processing of amplitude modulation. II. Spectral and temporal integration
,”
J. Acoust. Soc. Am.
102
,
2906
2619
.
7.
Dau
,
T.
,
Verhey
,
J.
, and
Kohlrausch
,
A.
(
1999
). “
Intrinsic envelope fluctuations and modulation-detection thresholds for narrow-band noise carriers
,”
J. Acoust. Soc. Am.
106
,
2752
2760
.
8.
Derleth
,
R. P.
, and
Dau
,
T.
(
2000
). “
On the role of envelope fluctuation processing in spectral masking
,”
J. Acoust. Soc. Am.
108
,
285
296
.
9.
Ewert
,
S. D.
, and
Dau
,
T.
(
2000
). “
Characterizing frequency selectivity for envelope fluctuations
,”
J. Acoust. Soc. Am.
108
,
1181
1196
.
10.
Ewert
,
S. D.
, and
Dau
,
T.
(
2004
). “
External and internal limitations in amplitude-modulation processing
,”
J. Acoust. Soc. Am.
116
,
478
490
.
11.
Ewert
,
S. D.
,
Verhey
,
J. L.
, and
Dau
,
T.
(
2002
). “
Spectro-temporal processing in the envelope-frequency domain
,”
J. Acoust. Soc. Am.
112
,
2921
2931
.
12.
Green
,
D. M.
(
1983
). “
Profile analysis. A different view of auditory intensity discrimination
,”
Am. Psychol.
38
,
133
142
.
14.
Houtgast
,
T.
(
1989
). “
Frequency selectivity in amplitude-modulation detection
,”
J. Acoust. Soc. Am.
85
,
1676
1680
.
15.
Joris
,
P. X.
,
Schreiner
,
C. E.
, and
Rees
,
A.
(
2004
). “
Neural processing of amplitude-modulated sounds
,”
Physiol. Rev.
84
,
541
577
.
16.
Joris
,
P. X.
, and
Yin
,
T. C. T.
(
1992
). “
Responses to amplitude-modulated tones in the auditory nerve of the cat
,”
J. Acoust. Soc. Am.
91
,
215
232
.
17.
Kidd
,
G.
, Jr.
,
Mason
,
C. R.
,
Brantley
,
M. A.
, and
Owen
,
G. A.
(
1989
). “
Roving-level tone-in-noise detection
,”
J. Acoust. Soc. Am.
86
,
1340
1354
.
18.
Kohlrausch
,
A.
,
Fassel
,
R.
, and
Dau
,
T.
(
2000
). “
The influence of carrier level and frequency on modulation and beat-detection thresholds for sinusoidal carriers
,”
J. Acoust. Soc. Am.
108
,
723
734
.
19.
Levitt
,
H.
(
1971
). “
Transformed up-down methods in psychoacoustics
,”
J. Acoust. Soc. Am.
49
,
467
477
.
20.
Lorenzi
,
C.
,
Berthommier
,
F.
, and
Demany
,
L.
(
1999
). “
Discrimination of amplitude-modulation phase spectrum
,”
J. Acoust. Soc. Am.
105
,
2987
2990
.
21.
Lorenzi
,
C.
,
Simpson
,
M. I. G.
,
Millman
,
R. E.
,
Griffiths
,
T. D.
,
Woods
,
W. P.
,
Rees
,
A.
, and
Green
,
G. G.
(
2001b
). “
Second-order modulation detection thresholds for pure-tone and narrow-band noise carriers
,”
J. Acoust. Soc. Am.
110
,
2470
2478
.
22.
Lorenzi
,
C.
,
Soares
,
C.
, and
Vonner
,
T.
(
2001a
). “
Second-order temporal modulation transfer functions
,”
J. Acoust. Soc. Am.
110
,
1030
1038
.
23.
Moore
,
B. C. J.
, and
Sek
,
A.
(
2000
). “
Effects of relative phase and frequency spacing on the detection of three-component amplitude modulation
,”
J. Acoust. Soc. Am.
108
,
2337
2344
.
24.
Nelson
,
P. C.
, and
Carney
,
L. H.
(
2004
). “
A phenomenological model of peripheral and central neural responses to amplitude-modulated tones
,”
J. Acoust. Soc. Am.
116
,
2173
2186
.
25.
Richards
,
V. M.
, and
Nekrich
,
R. D.
(
1993
). “
The incorporation of level and level-invariant cues for the detection of a tone added to noise
,”
J. Acoust. Soc. Am.
94
,
2560
2574
.
26.
Shofner
,
W. P.
,
Sheft
,
S.
, and
Guzman
,
S. J.
(
1996
). “
Responses of ventral cochlear nucleus units in the chinchilla to amplitude modulation by low-frequency, two-tone complexes
,”
J. Acoust. Soc. Am.
99
,
3592
3605
.
27.
Strickland
,
E. A.
, and
Viemeister
,
N. F.
(
1996
). “
Cues for discrimination of envelopes
,”
J. Acoust. Soc. Am.
99
,
3638
3646
.
28.
Tougaard
,
J.
(
2000
). “
Stochastic resonance and signal detection in an energy detector—Implications for biological receptor systems
,”
Biol. Cybern.
83
,
471
480
.
29.
Viemeister
,
N. F.
(
1979
). “
Temporal modulation transfer functions based upon modulation thresholds
,”
J. Acoust. Soc. Am.
66
,
1364
1380
.
30.
Ward
,
L. M.
,
Neiman
,
A.
, and
Moss
,
F.
(
2002
). “
Stochastic resonance in psychophysics and animal behavior
,”
Biol. Cybern.
87
,
91
101
.
31.
Wiesenfeld
,
K.
, and
Jaramillo
,
F.
(
1998
). “
Minireview of stochastic resonance
,”
Chaos
8
,
539
548
.
You do not currently have access to this content.