The development of multichannel time-reversal (T/R) processing techniques continues to progress rapidly especially when the need to communicate in a reverberant environment is critical. The underlying T/R concept is based on time-reversing the Green’s function characterizing the uncertain communications channel mitigating the deleterious dispersion and multipath effects. In this paper, attention is focused on two major objectives: (1) wideband communications leading to a time-reference modulation technique; and (2) multichannel acoustic communications in two waveguides: a stairwell and building corridors with many obstructions, multipath returns, severe background noise, disturbances, and long propagation paths (180ft) including disruptions (bends). It is shown that T/R receivers are easily extended to wideband designs. Acoustic information signals are transmitted with an eight-element array to two receivers with a significant loss in signal levels due to the propagation environment. The results of the new wideband T/R processor and modulation scheme demonstrate that the overall performance for both high (24-bit) and low (1-bit) bit level analog-to-digital converter designs. These results are validated by performing proof-of-principle acoustic communications experiments in air. It is shown that the resulting T/R receivers are capable of extracting the transmitted coded sequence from noisy microphone array measurements with zero-bit error.

1.
J. G.
Proakis
,
Digital Communications
(
McGraw-Hill
,
New York
,
1995
).
2.
S.
Haykin
,
Communication Systems
(
Wiley
,
New York
,
2001
).
3.
M.
Fink
, “
Time reversal in acoustics
,”
Contemp. Phys.
37
,
95
109
(
1996
).
4.
D. H.
Chambers
,
J. V.
Candy
,
S. K.
Lehman
,
J. S.
Kallman
,
A. J.
Poggio
, and
A. W.
Meyer
, “
Time-reversal and the spatio-temporal matched-filter
,”
J. Acoust. Soc. Am.
116
,
1348
1350
(
2004
).
5.
A.
Parvulescu
, “
Matched-signal (MESS) processing by the ocean
,”
J. Acoust. Soc. Am.
98
,
943
960
(
1995
).
6.
D. R.
Jackson
and
D. R.
Dowling
, “
Phase conjugation in underwater acoustics
,”
J. Acoust. Soc. Am.
89
,
171
181
(
1991
).
7.
D. R.
Dowling
, “
Acoustic pulse compression using passive phase-conjugate processing
,”
J. Acoust. Soc. Am.
95
,
1450
1458
(
1994
).
8.
J.-P.
Hermand
and
W.
Roderick
, “
Acoustic model-based matched filter processing for fading time-dispersive ocean channels: Theory and experiment
,”
IEEE J. Ocean. Eng.
18
,
447
465
(
1993
).
9.
R. K.
Brienzo
and
W. S.
Hodgkiss
, “
Broadband matched-field processing
,”
J. Acoust. Soc. Am.
94
,
2821
2831
(
1993
).
10.
W. A.
Kuperman
,
W. S.
Hodgkiss
, and
H. C.
Song
, “
Phase conjugation in the ocean: Experimental demonstration of an acoustic time-reversal mirror
,”
J. Acoust. Soc. Am.
103
,
25
40
(
1998
).
11.
J.-P.
Hermand
, “
Broad-band geoacoustic inversion in shallow water from waveguide impulse response measurements on a single hydrophone: Theory and experimental results
,”
IEEE J. Ocean. Eng.
24
,
41
66
(
1999
).
12.
W. S.
Hodgkiss
,
H. C.
Song
,
W. A.
Kuperman
,
T.
Akal
,
C.
Ferla
, and
D. R.
Jackson
, “
A long range and variable focus phase-conjugation experiment in shallow water
,”
J. Acoust. Soc. Am.
105
,
1597
1604
(
1999
).
13.
G.
Edelmann
,
T.
Akal
,
W. S.
Hodgkiss
,
S.
Kim
,
W. A.
Kuperman
, and
H. C.
Song
, “
An initial demonstration of underwater acoustic communication using time reversal
,”
IEEE J. Ocean. Eng.
27
,
602
609
(
2002
).
14.
D.
Rouseff
,
D. R.
Jackson
,
W. L.
Fox
,
C. D.
Jones
,
J. A.
Ritcey
, and
D. R.
Dowling
, “
Underwater acoustic communication by passive-phase conjugation: Theory and experiment
,”
IEEE J. Ocean. Eng.
26
,
821
831
(
2001
).
15.
K. B.
Smith
,
A. M.
Abrantes
, and
A.
Larraza
, “
Examination of time-reversal acoustics in shallow water and applications to noncoherent underwater communications
,”
J. Acoust. Soc. Am.
113
,
3095
3110
(
2003
).
16.
M.
Heinemann
,
A.
Larraza
, and
K. B.
Smith
, “
Experimental studies of applications of time-reversal acoustics to noncoherent underwater communications
,”
J. Acoust. Soc. Am.
113
,
3111
3116
(
2003
).
17.
J. V.
Candy
,
A. W.
Meyer
,
A. J.
Poggio
, and
B. L.
Guidry
, “
Time-reversal processing for an acoustic communications experiment in a highly reverberant environment
,”
J. Acoust. Soc. Am.
115
,
1621
1631
(
2004
).
18.
J. V.
Candy
,
A. J.
Poggio
,
D. H.
Chambers
,
B. L.
Guidry
,
C. L.
Robbins
, and
C. A.
Kent
, “
Multichannel time-reversal processing for acoustic communications in a highly reverberant environment
,”
J. Acoust. Soc. Am.
118
,
2339
2354
(
2005
).
19.
D. H.
Johnson
and
D. E.
Dudgeon
,
Array Signal Processing: Concepts and Techniques
(
Prentice-Hall
,
Engelwood Cliffs, NJ
,
1993
).
20.
J. V.
Candy
,
Model-Based Signal Processing
(
Wiley/IEEE Press
,
Hoboken, NJ
,
2006
).
21.
A.
Derode
,
A.
Tourin
, and
M.
Fink
, “
Ultrasonic pulse compression with one-bit time reversal through multiple scattering
,”
J. Appl. Phys.
85
,
6343
.
22.
L.
Yang
and
G. B.
Giannakis
, “
Ultra-wideband communications
,”
IEEE Signal Process. Mag.
21
,
26
54
(
2004
).
23.
A. F.
Naguib
,
N.
Seshadri
, and
A. R.
Calderbank
, “
Space-time coding and signal processing for high data rate wireless communications
,”
IEEE Signal Process. Mag.
17
,
76
92
(
2000
).
24.
A. J.
Paulraj
and
C. B.
Papadias
, “
Space-time processing for wireless communications
,”
IEEE Signal Process. Mag.
14
,
49
83
(
1997
).
You do not currently have access to this content.