This paper applies geoacoustic inversion to acoustic-field data collected on a bottom-moored horizontal line array due to a continuous-wave towed source at a shallow water site in the Barents Sea. The source transmitted tones in the frequency band of 30160Hz at levels comparable to those of a merchant ship, with resulting signal-to-noise ratios of 915dB. Bayesian inversion is applied to cross-spectral density matrices formed by averaging spectra from a sequence of time-series segments (snapshots). Quantifying data errors, including measurement and theory errors, is an important component of Bayesian inversion. To date, data error estimation for snapshot-averaged data has assumed either that averaging reduces errors as if they were fully independent between snapshots, or that averaging does not reduce errors at all. This paper quantifies data errors assuming that averaging reduces measurement error (dominated by ambient noise) but does not reduce theory (modeling) error, providing a physically reasonable intermediary between the two assumptions. Inversion results in the form of marginal posterior probability distributions are compared for the different approaches to data error estimation, and for data collected at several source ranges and bearings. Geoacoustic parameter estimates are compared with data from supporting geophysical measurements and historical data from the region.

1.
M. D.
Collins
,
W. A.
Kuperman
, and
H.
Schmidt
, “
Nonlinear inversion for ocean-bottom properties
,”
J. Acoust. Soc. Am.
92
,
2770
2783
(
1992
).
2.
S. E.
Dosso
,
M. L.
Yeremy
,
J. M.
Ozard
, and
N. R.
Chapman
, “
Estimation of ocean-bottom properties by matched-field inversion of acoustic field data
,”
IEEE J. Ocean. Eng.
18
,
232
239
(
1993
).
3.
P.
Gerstoft
, “
Inversion of seismoacoustic data using genetic algorithms and a posteriori probability distributions
,”
J. Acoust. Soc. Am.
95
,
770
781
(
1994
).
4.
P.
Gerstoft
and
C. F.
Mecklenbräuker
, “
Ocean acoustic inversion with estimation of a posteriori probability distributions
,”
J. Acoust. Soc. Am.
104
,
808
819
(
1998
).
5.
C. F.
Mecklenbräuker
and
P.
Gerstoft
, “
Objective functions for ocean acoustic inversion derived by likelihood methods
,”
J. Comput. Acoust.
8
,
259
270
(
2000
).
6.
S. E.
Dosso
,
M. J.
Wilmut
, and
A. L.
Lapinski
, “
An adaptive hybrid algorithm for geoacoustic inversion
,”
IEEE J. Ocean. Eng.
26
,
324
336
(
2001
).
7.
S. E.
Dosso
, “
Quantifying uncertainties in geoacoustic inversion I: A fast Gibbs sampler approach
,”
J. Acoust. Soc. Am.
111
,
129
142
(
2002
).
8.
S. E.
Dosso
and
P. L.
Nielsen
, “
Quantifying uncertainties in geoacoustic inversion II: Application to a broadband shallow-water experiment
,”
J. Acoust. Soc. Am.
111
,
143
159
(
2002
).
9.
S. E.
Dosso
and
M. J.
Wilmut
, “
Quantifying data information content in geoacoustic inversion
, ”
IEEE J. Ocean. Eng.
27
,
296
304
(
2002
).
10.
A.
Caiti
,
S. M.
Jesus
, and
Å.
Kristensen
, “
Geoacoustic seafloor exploration with a towed array in a shallow water area of the Strait of Sicily
,”
IEEE J. Ocean. Eng.
21
,
355
366
(
1996
).
11.
M.
Siderius
,
P. L.
Nielsen
, and
P.
Gerstoft
, “
Range-dependent seabed characterization by inversion of acoustic data from a towed receiver array
,”
J. Acoust. Soc. Am.
112
,
1523
1535
(
2002
).
12.
M. R.
Fallat
,
P. L.
Nielsen
,
S. E.
Dosso
, and
M.
Siderius
, “
Geoacoustic characterization of a range-dependent ocean environment using towed array data
,”
IEEE J. Ocean. Eng.
30
,
198
206
(
2005
).
13.
D. J.
Battle
,
P.
Gerstoft
,
W. S.
Hodgkiss
,
W. A.
Kuperman
, and
P. L.
Nielsen
, “
Bayesian model selection applied to self-noise geoacoustic inversion
,”
J. Acoust. Soc. Am.
116
,
2043
2056
(
2004
).
14.
D. P.
Knobles
,
R. A.
Koch
,
L. A.
Thompson
,
K. C.
Focke
, and
P. E.
Eisman
, “
Broadband sound propagation in shallow water and geoacoustic inversion
,”
J. Acoust. Soc. Am.
113
,
205
222
(
2003
).
15.
R. A.
Koch
and
D. P.
Knobles
, “
Geoacoustic inversion with ships as sources
,”
J. Acoust. Soc. Am.
117
,
626
637
(
2005
).
16.
D.
Tollefsen
,
M. J.
Wilmut
, and
N. R.
Chapman
, “
Estimates of geoacoustic model parameters from inversions of horizontal and vertical line array data
,”
IEEE J. Ocean. Eng.
30
,
764
772
(
2005
).
17.
R. M. S.
Barlee
,
N. R.
Chapman
, and
M. J.
Wilmut
, “
Geoacoustic model parameter estimation using a bottom moored hydrophone array
,”
IEEE J. Ocean. Eng.
30
,
773
783
(
2005
).
18.
S. E.
Dosso
,
P. L.
Nielsen
, and
M. J.
Wilmut
, “
Data error covariance in matched-field geoacoustic inversion
,”
J. Acoust. Soc. Am.
119
,
208
219
(
2006
).
19.
C. W.
Bogart
and
T. C.
Yang
, “
Source localization with horizontal arrays in shallow water: Spatial sampling and effective aperture
,”
J. Acoust. Soc. Am.
96
,
1677
1686
(
1994
).
20.
R. O.
Nielsen
,
Sonar Signal Processing
(
Ardent House
, London,
1990
).
21.
C. E.
Solberg
, “
Geoacoustic models for the 2003 antenna experiment area compiled from shallow seismic data
,” Technical Report 2004/01602, Norwegian Defence Research Establishment, Kjeller, Norway, 2004.
22.
A.
Lepland
, “
Results of analytical tests on FFI 2003 sediment cores
,” Technical Report 2004.019, Geological Survey of Norway, Trondheim, Norway, 2004.
23.
T. H.
Orsi
and
D. A.
Dunn
, “
Correlations between sound velocity and related properties of glaciomarine sediments: Barents Sea
,”
Geo-Mar. Lett.
11
,
79
83
(
1991
).
24.
J.
Sættem
,
L.
Rise
, and
D. A.
Westgaard
, “
Composition and properties of glacigenic sediments in the southwestern Barents Sea
,”
Marine Georesources & Geotechnology
10
,
229
255
(
1991
).
25.
W. M.
Telford
,
L. P.
Geldart
, and
R. E.
Sheriff
,
Applied Geophysics
(
Cambridge University Press
, Cambridge,
1990
).
26.
S. R.
Rutherford
and
K. E.
Hawker
, “
The effects of density gradients on bottom reflection for a class of marine sediments
,”
J. Acoust. Soc. Am.
63
,
750
757
(
1978
).
27.
A.
Tarantola
,
Inverse Problem Theory
(
Elsevier
, Amsterdam,
1987
).
28.
M.
Sen
and
P. L.
Stoffa
,
Global Optimization Methods in Geophysical Inversion
(
Elsevier
, Amsterdam,
1995
).
29.
E. K.
Westwood
,
C. T.
Tindle
, and
N. R.
Chapman
, “
A normal mode model for acousto-elastic ocean environments
,”
J. Acoust. Soc. Am.
100
,
3631
3645
(
1996
).
30.
E. K.
Westwood
and
R. A.
Koch
, “
Elimination of branch cuts from the normal-mode solution using gradient half spaces
,”
J. Acoust. Soc. Am.
106
,
2513
2523
(
1999
).
You do not currently have access to this content.