Signal decorrelation is a major source of error in the displacements estimated using correlation techniques for elastographic imaging. Previous papers have addressed the variation in the correlation coefficient as a function of the applied compression for a finite window size and an insonification angle of zero degrees. The recent use of angular beam-steered radio-frequency echo signals for spatial angular compounding and shear strain estimation have demonstrated the need for understanding signal decorrelation artifacts for data acquired at different beam angles. In this paper, we provide both numerical and closed form theoretical solutions of the correlation between pre- and post-compression radio-frequency echo signals acquired at a specified beam angle. The expression for the correlation coefficient obtained is a function of the beam angle and the applied compression for a finite duration window. Accuracy of the theoretical results is verified using tissue-mimicking phantom experiments on a uniformly elastic phantom using beam-steered data acquisitions on a linear array transducer. The theory predicts a faster decorrelation with changes in the beam or insonification angle for longer radio-frequency echo signal segments and at deeper locations in the medium. Theoretical results provide useful information for improving angular compounding and shear strain estimation techniques for elastography.

1.
J.
Ophir
,
I.
Cespedes
,
H.
Ponnekanti
,
Y.
Yazdi
, and
X.
Li
, “
Elastography—A quantitative method for imaging the elasticity of biological tissues
,”
Ultrason. Imaging
13
,
111
134
(
1991
).
2.
R.
Muthupillai
,
D. J.
Lomas
,
P. J.
Rossman
,
J. F.
Greenleaf
,
A.
Manduca
, and
R. L.
Ehman
, “
Magnetic-resonance elastography by direct visualization of propagating acoustic strain waves
,”
Science
269
,
1854
1857
(
1995
).
3.
J.
Ophir
,
S. K.
Alam
,
B.
Garra
,
F.
Kallel
,
E.
Konofagou
,
T.
Krouskop
, and
T.
Varghese
, “
Elastography: Ultrasonic estimation and imaging of the elastic properties of tissues
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
213
,
203
233
(
1999
).
4.
T.
Varghese
,
J.
Ophir
,
E.
Konofagou
,
F.
Kallel
, and
R.
Righetti
, “
Tradeoffs in elastographic imaging
,”
Ultrason. Imaging
23
,
216
248
(
2001
).
5.
A.
Pesavento
,
A.
Lorenz
,
S.
Siebers
, and
H.
Ermert
, “
New real-time strain imaging concepts using diagnostic ultrasound
,”
Phys. Med. Biol.
45
,
1423
1435
(
2000
).
6.
I.
Cespedes
,
J.
Ophir
,
H.
Ponnekanti
, and
N.
Maklad
, “
Elastography: Elasticity imaging using ultrasound with application to muscle and breast in vivo
,”
Ultrason. Imaging
15
,
73
88
(
1993
).
7.
M.
O’Donnell
,
A. R.
Skovoroda
,
B. M.
Shapo
, and
S. Y.
Emelianov
, “
Internal displacement and strain imaging using ultrasonic speckle tracking
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
41
,
314
325
(
1994
).
8.
K. J.
Parker
,
S. R.
Huang
,
R. A.
Musulin
, and
R. M.
Lerner
, “
Tissue response to mechanical vibrations for sonoelasticity imaging
,”
Ultrasound Med. Biol.
16
,
241
246
(
1990
).
9.
M.
Bertrand
,
M.
Meunier
,
M.
Doucet
, and
G.
Ferland
, “
Ultrasonic biomechanical strain gauge based on speckle tracking
,”
IEEE Ultrasonics Symposium
(
Montreal, Quebec, Canada
,
1989
) pp.
859
864
.
10.
T. A.
Krouskop
,
D. R.
Dougherty
, and
F. S.
Vinson
, “
A pulsed Doppler ultrasonic system for making noninvasive measurements of the mechanical properties of soft tissue
,”
J. Rehabil. Res. Dev.
24
,
1
8
(
1987
).
11.
M. F.
Insana
,
L. T.
Cook
,
M.
Bilgen
,
P.
Chaturvedi
, and
Y.
Zhu
, “
Maximum-likelihood approach to strain imaging using ultrasound
,”
J. Acoust. Soc. Am.
107
,
1421
1434
(
2000
).
12.
K.
Nightingale
,
M.
Scott Soo
,
R.
Nightingale
, and
G.
Trahey
, “
Acoustic radiation force impulse imaging: in vivo demonstration of clinical feasibility
,”
Ultrasound Med. Biol.
28
,
227
235
(
2002
).
13.
A.
Pesavento
,
A.
Lorenz
,
S.
Siebers
, and
H.
Ermert
, “
New real-time strain imaging concepts using diagnostic ultrasound
,”
Phys. Med. Biol.
45
,
1423
1435
(
2000
).
14.
D. B.
Plewes
,
I.
Betty
,
S. N.
Urchuk
, and
I.
Soutar
, “
Visualizing tissue compliance with MR imaging
,”
J. Magn. Reson Imaging
5
,
733
738
(
1995
).
15.
E.
Konofagou
and
J.
Ophir
, “
A new elastographic method for estimation and imaging of lateral displacements, lateral strains, corrected axial strains and Poisson’s ratios in tissues
,”
Ultrasound Med. Biol.
24
,
1183
1199
(
1998
).
16.
E. E.
Konofagou
and
J.
Ophir
, “
Precision estimation and imaging of normal and shear components of the 3D strain tensor in elastography
,”
Phys. Med. Biol.
45
,
1553
1563
(
2000
).
17.
U.
Techavipoo
,
Q.
Chen
,
T.
Varghese
, and
J. A.
Zagzebski
, “
Estimation of displacement vectors and strain tensors in elastography using angular insonifications
,”
IEEE Trans. Med. Imaging
23
,
1479
1489
(
2004
).
18.
S. K.
Alam
,
J.
Ophir
, and
E. E.
Konofagou
, “
An adaptive strain estimator for elastography
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
45
,
461
472
(
1998
).
19.
S. K.
Alam
and
J.
Ophir
, “
Reduction of signal decorrelation from mechanical compression of tissues by temporal stretching: Applications to elastography
,”
Ultrasound Med. Biol.
23
,
95
105
(
1997
).
20.
I.
Cespedes
and
J.
Ophir
, “
Reduction of image noise in elastography
,”
Ultramicroscopy
15
,
89
102
(
1993
).
21.
T.
Varghese
,
J.
Ophir
, and
I.
Cespedes
, “
Noise reduction in elastograms using temporal stretching with multicompression averaging
,”
Ultrasound Med. Biol.
22
,
1043
1052
(
1996
).
22.
U.
Techavipoo
and
T.
Varghese
, “
Wavelet denoising of displacement estimates in elastography
,”
Ultrasound Med. Biol.
30
,
477
491
(
2004
).
23.
U.
Techavipoo
and
T.
Varghese
, “
Improvements in elastographic contrast-to-noise ratio using spatial-angular compounding
,”
Ultrasound Med. Biol.
31
,
529
536
(
2005
).
24.
U.
Techavipoo
,
Q.
Chen
,
T.
Varghese
,
J. A.
Zagzebski
, and
E. L.
Madsen
, “
Noise reduction using spatial-angular compounding for elastography
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
51
,
510
520
(
2004
).
25.
M.
Rao
,
Q.
Chen
,
H.
Shi
, and
T.
Varghese
, “
Spatial-angular compounding for elastography using beam steering on linear array transducers
,”
Med. Phys.
33
,
618
626
(
2006
).
26.
J.
Meunier
and
M.
Bertrand
, “
Ultrasonic texture motion analysis—Theory and simulation
,”
IEEE Trans. Med. Imaging
14
,
293
300
(
1995
).
27.
M.
Bilgen
and
M. F.
Insana
, “
Deformation models and correlation analysis in elastography
,”
J. Acoust. Soc. Am.
99
,
3212
3224
(
1996
).
28.
F.
Kallel
and
J.
Ophir
, “
Three-dimensional tissue motion and its effect on image noise in elastography
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
44
,
1286
1296
(
1997
).
29.
T.
Varghese
,
M.
Bilgen
, and
J.
Ophir
, “
Multiresolution imaging in elastography
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
45
,
65
75
(
1998
).
30.
M.
Bilgen
, “
Dynamics of errors in 3D motion estimation and implications for strain-tenser imaging in acoustic elastography
,”
Phys. Med. Biol.
45
,
1565
1578
(
2000
).
31.
R. F.
Wagner
,
M. F.
Insana
, and
S. W.
Smith
, “
Fundamental correlation lengths of coherent speckle in medical ultrasonic images
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
35
,
34
44
(
1988
).
32.
R. F.
Wagner
,
S. W.
Smith
,
J. M.
Sandrik
, and
H.
Lopez
, “
Statistics of speckle in ultrasound B-scans
,”
IEEE Trans. Sonics Ultrason.
30
,
156
163
(
1983
).
33.
M.
Odonnell
and
S. D.
Silverstein
, “
Optimum displacement for compound image generation in medical ultrasound
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
35
,
470
476
(
1988
).
34.
S. W.
Smith
,
R. F.
Wagner
,
J. M.
Sandrik
, and
H.
Lopez
, “
Low contrast detectability and contrast detail analysis in medical ultrasound
,”
IEEE Trans. Sonics Ultrason.
30
,
164
173
(
1983
).
35.
C. B.
Burckhardt
, “
Speckle In Ultrasound B-Mode Scans
,”
IEEE Trans. Sonics Ultrason.
25
,
1
6
(
1978
).
36.
Q.
Chen
,
A. L.
Gerig
,
U.
Techavipoo
,
J.
Zagzebski
, and
T.
Varghese
, “
Correlation of RF Signals During Angular Compounding
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
52
,
961
970
(
2005
).
37.
E. L.
Madsen
,
G. R.
Frank
,
T. A.
Krouskop
,
T.
Varghese
,
F.
Kallel
, and
J.
Ophir
, “
Tissue-mimicking oil-in-gelatin dispersions for use in heterogeneous elastography phantoms
,”
Ultrason. Imaging
25
,
17
38
(
2003
).
You do not currently have access to this content.