A maximum auditory steady-state response (ASSR) amplitude is yielded when the ASSR is elicited by an amplitude-modulated tone (fc) with a fixed modulation frequency (fm=40Hz), whereas the maximum distortion product otoacoustic emission (DPOAE) level is yielded when the DPOAE is elicited using a fixed frequency ratio of the primary tones (f2f1=1.2). When eliciting the DPOAE and ASSR by the same tone pair, optimal stimulation is present for either DPOAE or ASSR and thus adequate simultaneous DPOAE/ASSR measurement is not possible across test frequency f2 or fc, respectively. The purpose of the present study was to determine whether the ASSR and DPOAE can be measured simultaneously without notable restrictions using a DPOAE stimulus setting in which one primary tone is amplitude modulated. A DPOAE of frequency 2f1-f2 and ASSR of modulation frequency 41Hz were measured in ten normal hearing subjects at a test frequency between 0.5 and 8kHz(f2=fc). The decrease in the DPOAE level and the loss in ASSR amplitude during hybrid mode stimulation amounted, on average, to only 2.60dB [standard deviation (SD)=1.38dB] and 1.83dB(SD=2.38dB), respectively. These findings suggest simultaneous DPOAE and ASSR measurements to be feasible across all test frequencies when using a DPOAE stimulus setting where the primary tone f2 is amplitude modulated.

1.
Abdala
,
C.
(
1996
). “
Distortion product otoacoustic emission (2f1-f2) amplitude as a function of f2f1 frequency ratio and primary tone level separation in human adults and neonates
,”
J. Acoust. Soc. Am.
100
(
6
),
3726
3740
.
2.
Boege
,
P.
, and
Janssen
,
T.
(
2002
). “
Pure-tone threshold estimation from extrapolated distortion product otoacoustic emission I/O-functions in normal and cochlear hearing loss ears
,”
J. Acoust. Soc. Am.
111
,
1810
1818
.
3.
Brown
,
D. K.
,
Bowman
,
D. M.
, and
Kimberley
,
B. P.
(
2000
). “
The effects of maturation and stimulus parameters on the optimal f2f1 ratio of the 2f1-f2 distortion product otoacoustic emission in neonates
,”
Hear. Res.
145
(
1–2
),
17
24
.
4.
Cohen
,
L. T.
,
Rickards
,
F. W.
, and
Clark
,
G. M.
(
1991
). “
A comparison of steady-state evoked potentials to modulated tones in awake and sleeping humans
,”
J. Acoust. Soc. Am.
90
,
2467
2479
.
5.
Dallos
,
P.
, and
Cheatham
,
M. A.
(
1971
). “
Travel time in the cochlea and its determination from cochlear microphinic data
,”
J. Acoust. Soc. Am.
49
,
1140
1143
.
6.
Dimitrijevic
,
A.
,
John
,
M. S.
,
van Roon
,
P.
, and
Picton
,
T. W.
(
2001
), “
Human auditory steady-state responses to tones independently modulated in both frequency and amplitude
,”
Ear Hear.
22
(
2
),
100
111
.
7.
Dobie
,
R. A.
, and
Wilson
,
M. J.
(
1993
). “
Objective response detection in the frequency domain
,”
Electroencephalogr. Clin. Neurophysiol.
88
(
6
),
516
524
.
8.
Galambos
,
R.
,
Makeig
,
S.
, and
Talmachoff
,
P. J.
(
1981
). “
A 40-Hz auditory potential recorded from the human scalp
,”
Proc. Natl. Acad. Sci. U.S.A.
78
(
4
),
2643
2647
.
9.
Gaskill
,
S. A.
, and
Brown
,
A. M.
(
1990
). “
The behavior of the acoustic distortion product, 2f1-f2, from the human ear and its relation to auditory sensitivity
,”
J. Acoust. Soc. Am.
88
(
2
),
821
839
.
10.
Gorga
,
M. P.
,
Neely
,
S. T.
,
Dorn
,
P. A.
, and
Hoover
,
B. M.
(
2003
). “
Further efforts to predict pure-tone thresholds from distortion product otoacoustic emission input/output functions
,”
J. Acoust. Soc. Am.
113
,
3275
3284
.
11.
Herdman
,
A. T.
, and
Stapells
,
D. R.
(
2001
). “
Thresholds determined using the monotic and dichotic multiple auditory steady-state response technique in normal-hearing subjects
,”
Scand. Audiol.
30
(
1
),
41
49
.
12.
Herdman
,
A. T.
,
Picton
,
T. W.
, and
Stapells
,
D. R.
(
2002
). “
Place specificity of multiple auditory steady-state responses
.”
J. Acoust. Soc. Am.
112
(
4
),
1569
1582
.
13.
Janssen
,
T.
,
Boege
,
P.
,
von Mikusch-Buchberg
,
J.
, and
Raczek
,
J.
(
2005
). “
Investigation of potential effects of cellular phones on human auditory function by means of distortion product otoacoustic emissions
,”
J. Acoust. Soc. Am.
117
,
1241
1247
.
14.
John
,
M. S.
, and
Picton
,
T. W.
(
2000
). “
Human auditory steady-state responses to amplitude-modulated tones: phase and latency measurements
,”
Hear. Res.
141
(
1–2
),
57
79
.
15.
John
,
M. S.
,
Dimitrijevic
,
A.
,
van Roon
,
P.
, and
Picton
,
T. W.
(
2001
). “
Multiple auditory steady-state responses to AM and FM stimuli
,”
Audiol. Neuro-Otol.
6
(
1
),
12
27
.
16.
John
,
M. S.
,
Lins
,
O. G.
,
Boucher
,
B. L.
, and
Picton
,
T. W.
(
1998
). “
Multiple auditory steady-state responses (MASTER): Stimulus and recording parameters
,”
Audiology
37
(
2
),
59
82
.
17.
Kemp
,
D. T.
,
Bray
,
P.
,
Alexander
,
L.
, and
Brown
,
A. M.
(
1986
). “
Acoustic emission cochleography—practical aspects
,”
Scand. Audiol. Suppl.
25
,
71
95
.
18.
Kummer
,
P.
,
Janssen
,
T.
, and
Arnold
,
W.
(
1995
). “
Suppression tuning characteristics of the 2f1-f2 distortion-product otoacoustic emission in humans
,”
J. Acoust. Soc. Am.
98
,
197
210
.
19.
Kummer
,
P.
,
Janssen
,
T.
,
Hulin
,
P.
, and
Arnold
,
W.
(
2000
). “
Optimal L1-L2 primary tone level separation remains independent of test frequency in humans
,”
Hear. Res.
146
,
47
56
.
20.
Lasky
,
R. E.
(
1998a
). “
Distortion product otoacoustic emissions in human newborns and adults. (I): Frequency effects
,”
J. Acoust. Soc. Am.
103
,
981
991
.
21.
Lasky
,
R. E.
(
1998b
). “
Distortion product otoacoustic emissions in human newborns and adults. (II): Level effects
,”
J. Acoust. Soc. Am.
103
,
992
1000
.
22.
Pethe
,
J.
,
Mühler
,
R.
, and
von Specht
,
H.
(
2001
). “
Zur Abhängigkeit der amplitde modulation following response von der Vigilanz
,”
HNO
49
,
188
193
(in German).
23.
Picton
,
T. W.
,
Vajsar
,
J.
,
Rodriguez
,
R.
, and
Campbell
,
K. B.
(
1987
). “
Reliability estimates for steady state evoked potentials
,”
Electroencephalogr. Clin. Neurophysiol.
68
,
119
131
.
24.
Purcell
,
D. W.
,
John
,
M. S.
, and
Picton
,
T. W.
(
2002
). “
Concurrent measurement of distortion product otoacoustic emissions and auditory steady state evoked potentials
,”
Hear. Res.
176
,
128
141
.
25.
Ross
,
B.
,
Draganova
,
R.
,
Picton
,
T. W.
, and
Pantev
,
C.
(
2003
). “
Frequency specificity of 40-Hz auditory steady-state respones
,”
Hear. Res.
186
,
57
68
.
26.
Stapells
,
D. R.
,
Linden
,
D.
,
Suffield
,
J.
,
Hamel
,
G.
, and
Picton
,
T. W.
(
1984
). “
Human auditory steady-state potentials
,”
Ear Hear.
5
,
105
113
.
27.
Stapells
,
D. R.
,
Makeig
,
S.
, and
Galambos
,
R.
(
1987
). “
Auditory steady-state responses: Threshold prediction using phase coherence
,”
Electroencephalogr. Clin. Neurophysiol.
67
,
260
270
.
28.
Valdes
,
J. L.
,
Perez-Abalo
,
M. C.
,
Martin
,
V.
,
Savio
,
G.
,
Sierra
,
C.
,
Rodriguez
,
E.
, and
Lins
,
O.
(
1997
). “
Comparison of statistical indicators for the automatic detection of 80Hz auditory steady state responses
,”
Ear Hear.
18
,
420
429
.
29.
Whitehead
,
M. L.
,
Stagner
,
B. B.
,
Lonsbury-Martin
,
B. L.
, and
Martin
,
G. K.
(
1995
). “
Effects of ear canal standing waves on measurements of distortion-product otoacoustic emissions
,”
J. Acoust. Soc. Am.
98
,
3200
3214
.
30.
Zurek
,
P. M.
(
1992
). “
Detectability of transient and sinusoidal otoacoustic emissions
,”
Ear Hear.
13
,
307
310
.
You do not currently have access to this content.