Frequency-invariant beamforming aims to parameterize array filter coefficients such that the spectral and spatial response profiles of the array can be adjusted independently. Solutions to this problem have been presented for specific sensor configurations often requiring a larger number of sensors. However, in practical applications, the number and location of sensors are often restricted. This paper proposes to find an optimal linear basis transformation that decouples the frequency response from the spatial response. A least-squares optimal basis transform can be computed numerically for arbitrary sensor configurations, for which typically no exact analytical solutions are available. This transform can be further combined with a spherical harmonics basis resulting in readily steerable broadband beams. This solution to broadband beamforming effectively decouples the array geometry from the steering geometry. Furthermore, for frequency-invariant beams, this approach results in a significant reduction in the number of beam-design parameters. Here, the method is demonstrated for an optimal design of far-field response for an irregular linear array with as few as three sensors.

1.
D. B.
Ward
,
R. A.
Kennedy
, and
R. C.
Williamson
, “
Theory and design of broadband sensor arrays with frequency invariant far-field beam patterns
,”
J. Acoust. Soc. Am.
97
,
1023
1034
(
1995
).
2.
T.
Abhayapala
,
R.
Kennedy
, and
R.
Williamson
, “
Nearfield broadband array design using a radially invariant modal expansion
,”
J. Acoust. Soc. Am.
107
,
392
403
(
2000
).
3.
R.
Kennedy
,
T.
Abhayapala
, and
D.
Ward
, “
Broadband near-field beamforming using a radial beampattern transformation
,”
IEEE Trans. Signal Process.
46
,
2147
2156
(
1998
).
4.
W.
Liu
and
S.
Weiss
, “
A new class of broadband arrays with frequency invariant beam patterns
,” in
Proceedings of the International Conference on Acoustics, Speech, and Signal Processing
(
IEEE
,
New York
,
2004
), Vol.
2
, pp.
185
188
.
5.
D. B.
Ward
,
R. A.
Kennedy
, and
R. C.
Williamson
, “
FIR filter design for frequency invariant beamformers
,”
IEEE Signal Process. Lett.
3
,
69
71
(
1996
).
6.
T.
Sekiguchi
and
Y.
Karasawa
, “
Wideband beamspace adaptive array utilizing FIR fan filters for multibeam forming
,”
IEEE Trans. Signal Process.
48
,
277
284
(
2000
).
7.
H.
Teutsch
and
W.
Kellermann
, “
EB-ESPRIT: 2D Localization of multiple wideband acoustic sources using eigenbeams
,” in
Proceedings of the International Conference on Acoustics, Speech, and Signal Processing
(
IEEE
,
New York
,
2005
), Vol.
3
, pp.
89
92
.
8.
J.
Meyer
and
G.
Elko
, “
A highly scalable spherical microphone array based on an orthonormal decomposition of the soundfield
,” in
Proceedings of the International Conference on Acoustics, Speech, and Signal Processing
(
IEEE
,
New York
,
2002
), Vol.
2
, pp.
1781
1784
.
9.
E. G.
Williams
,
Fourier Acoustics
(
Academic
,
New York
,
1999
).
10.
A.
Edmonds
,
Angular Momentum in Quantum Mechanics
(
Princeton University Press
,
Princeton, N.J.
,
1957
).
11.
Z.
Li
and
R.
Duraiswami
, “
A robust and self-reconfigurable design of spherical microphone array for multi-resolution beamforming
,” in
Proceedings of the International Conference on Acoustics, Speech, and Signal Processing
(
IEEE
,
New York
,
2005
), Vol.
4
, pp.
1137
1140
.
12.
Z.
Li
and
R.
Duraiswami
, “
Hemispherical microphone arrays for sound capture and beamforming
,” in
Proceedings of the Workshop on Applications of Signal Processing to Audio and Acoustics
(
IEEE
,
New York
,
2005
), pp.
106
109
.
13.
S.
Chan
and
C.
Pun
, “
On the design of digital broadband beamformer for uniform circular array with frequency invariant characteristics
,” in
Proceedings of the International Symposium on Circuits and Systems
(
IEEE
,
New York
,
2002
), Vol.
1
, pp.
693
696
.
14.
E.
Wigner
,
Gruppentheorie und ihre Anwendungen auf die Quantenmechanik der Atomspektren (Group theory and its applications to the quantum mechanics of atomic spectra)
(
Friedr. Vieweg, and Sohn
,
Berlin
,
1931
).
15.
C. H.
Choi
,
J.
Ivanic
,
M. S.
Gordon
, and
K.
Ruedenberg
, “
Rapid and stable determination of rotation matrices between spherical harmonics by direct recursion
,”
J. Chem. Phys.
111
,
8825
8831
(
1999
).
16.
R.
Jakob-Chien
and
B. K.
Alpert
, “
A fast spherical filter with uniform resolution
,”
J. Comput. Phys.
136
,
213
230
(
1997
).
17.
R.
Duraiswami
,
Z.
Li
,
D.
Zotkin
,
E.
Grassi
, and
N.
Gumerov
, “
Plane-wave decomposition analysis for spherical microphone arrays
,” in
Proceedings of the Workshop on Applications of Signal Processing to Audio and Acoustics
(
IEEE
,
New York
,
2005
), pp.
150
153
.
18.
P. N.
Swarztrauber
, “
The spectral approximation of discrete scalar and vector functions on the sphere
,”
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
16
,
934
949
(
1979
).
19.
P. N.
Swarztrauber
and
W. F.
Spotz
, “
Spherical harmonics projectors
,”
Math. Comput.
73
,
753
760
(
2003
).
20.
B.
Van Veen
and
K.
Buckley
, “
Beamforming techniques for spatial filtering
,”
Digital Signal Processing Handbook
(
CRC Press
,
New York
,
1997
), pp.
61
1
61
20
.
21.
S.
Blank
and
M.
Hutt
, “
On the empirical optimization of antenna arrays
,”
IEEE Antennas Propag. Mag.
47
,
58
67
(
2005
).
22.
W.
Liu
and
D.
Mandic
, “
Semi-blind source separation for convolutive mixtures based on frequency-invariant transformation
,” in
Proceedings of the International Conference on Acoustics, Speech, and Signal Processing
(
IEEE
,
New York
,
2005
).
23.
L. C.
Parra
, “
Least squares frequency invariant beamforming
,” in
Proceedings of the Workshop on Applications of Signal Processing to Acoustics and Audio
(
IEEE
,
New York
,
2005
).
You do not currently have access to this content.