This paper describes results of geoacoustic inversion using broadband signals from an experiment carried out at a site near the South Florida Ocean Measurement Centre in the Florida Straits. M-sequence coded pulse trains at different center carrier frequencies from 100to3200Hz were recorded at a vertical line array at a distance around 10km. Geoacoustic inversion was carried out to determine the feasibility of inverting the environmental parameters from this long-range propagation experiment. The received signal at lower frequencies below 400Hz consisted of a dominant water column signal and a secondary arrival delayed by 0.4s. The secondary signal was spatially filtered by beamforming the array data, and the beam data were inverted by matched beam processing in the time domain, combined with an adaptive simplex simulated annealing algorithm. The estimated values of compressional wave speed and density were in good agreement with ground truth values from sediment cores. The inverted shear wave speed appears to be a sensitive parameter and consistent with compressional wave speed. As a cross check, range and water depth were also included as inversion parameters, and the inversion results were close to the known values within small uncertainties.

1.
M. D.
Collins
,
W. A.
Kuperman
, and
H.
Schmidt
, “
Nonlinear inversion for ocean bottom properties
,”
J. Acoust. Soc. Am.
92
,
2770
2883
(
1992
).
2.
N. R.
Chapman
and
C. E.
Lindsay
, “
Matched field inversion for geoacoustic model parameters in shallow water
,”
IEEE J. Ocean. Eng.
21
,
347
355
(
1996
).
3.
M.
Musil
,
M. J.
Wilmut
, and
N. R.
Chapman
, “
A hybrid simplex genetic algorithm for estimating geoacoustic parameters using matched-field inversion
,”
IEEE J. Ocean. Eng.
24
,
358
369
(
1999
).
4.
S. E.
Dosso
,
M. J.
Wilmut
, and
A. S.
Lapinski
, “
An adaptive-hybrid algorithm for geoacoustic inversion
,”
IEEE J. Ocean. Eng.
26
,
324
336
(
2001
).
5.
P.
Gerstoft
, “
Inversion of seismo-acoustic data using genetic algorithms and a posteriori probability distributions
,”
J. Acoust. Soc. Am.
95
,
770
782
(
1994
).
6.
P.
Gerstoft
and
Mecklenbräuker
, “
Ocean acoustic inversion with estimation of a posteriori probability distributions
,”
J. Acoust. Soc. Am.
104
,
808
819
(
1998
).
7.
L.
Jaschke
and
N. R.
Chapman
, “
Matched field inversion of broadband data using the freeze bath method
,”
J. Acoust. Soc. Am.
106
,
1838
1851
(
1999
).
8.
S. E.
Dosso
, “
Quantifying uncertainty in geoacoustic inversion. I. A fast Gibbs sampler approach
,”
J. Acoust. Soc. Am.
111
,
129
142
(
2002
).
9.
S. E.
Dosso
and
P. L.
Nielsen
, “
Quantifying uncertainty in geoacoustic inversion. II. Application to broadband, shallow water data
,”
J. Acoust. Soc. Am.
111
,
143
159
(
2002
).
10.
R. A.
Koch
and
D. P.
Knobles
, “
Geoacoustic inversion with ships as sources
,”
J. Acoust. Soc. Am.
117
,
626
637
(
2005
).
11.
Z.-H.
Michalopoulou
, “
Matched-impulse-response processing for shallow-water localization and geoacoustic inversion
,”
J. Acoust. Soc. Am.
108
,
2082
2090
(
2000
).
12.
Z.-H.
Michalopoulou
and
M.
Picarelli
, “
Gibbs sampling for time-delay and amplitude estimation in underwater acoustics
,”
J. Acoust. Soc. Am.
117
,
799
808
(
2005
).
13.
A.
Tolstoy
,
N. R.
Chapman
, and
G. E.
Brooke
, “
Workshop’ 97: Benchmarking for geoacoustic inversion in shallow water
,”
J. Comput. Acoust.
6
,
1
28
(
1998
).
14.
N. R.
Chapman
,
S.
Chin-Bing
,
D.
King
, and
R. B.
Evans
, “
Benchmarking geoacoustic inversion methods for range-dependent waveguides
,”
IEEE J. Ocean. Eng.
28
,
320
330
(
2003
).
15.
H. B.
Nguyen
,
H. A.
DeFerrari
, and
N. J.
Williams
, “
Ocean acoustic sensor installation at the South Florida ocean Measurement Center
,”
IEEE J. Ocean. Eng.
27
,
235
244
(
2002
).
16.
H. A.
DeFerrari
,
N. J.
Williams
, and
H. B.
Nguyen
, “
Variability, coherence and predictability of shallow water acoustic propagation in the straits of Florida
,” in
Impact of Littoral Environmental Variability on Acoustic Prediactions and Sonar Performance
(
Kluwer Academic
,
Dordrecht
,
2000
), pp.
245
254
.
17.
N. R.
Chapman
and
Y.
Jiang
, “
Geoacoustic inversion of broadband data from the Florida Straits
,” in
High Frequency Ocean Acoustics
, edited by
M.
Porter
,
M.
Siderius
, and
W. A.
Kuperman
(
American Institute of Physics
,
New York
,
2004
), pp.
40
46
.
18.
T. C.
Yang
and
T.
Yates
, “
Matched-beam processing: Application to a horizontal line array in shallow water
,”
J. Acoust. Soc. Am.
104
, Pt. 1
1316
1330
(
1998
).
19.
T. C.
Yang
and
T.
Yates
, “
Matched-beam processing: Range tracking with vertical arrays in mismatched environments
,”
J. Acoust. Soc. Am.
104
,
2174
2188
(
1998
).
21.
T. G.
Birdsall
and
K.
Metzger
 Jr.
, “
Factor inverse matched filtering
,”
J. Acoust. Soc. Am.
79
(
1
),
91
99
(
1986
).
22.
E. K.
Westwood
,
C. T.
Tindle
, and
N. R.
Chapman
, “
A normal mode model for acousto-elastic ocean environments
,”
J. Acoust. Soc. Am.
100
,
3631
3645
(
1996
).
23.
D. F.
McNeill
, “
Sedimentology, physical properties, and acoustic response of sediment from piston cores at the South Florida Test Facility
,” Data Report, Comparative Sedimentology Laboratory, Division of Marine Geology and Geophysics, Rosenstiel School of Marine and Atmospheric Science, University of Miami, April.
2001
.
24.
J.-X.
Zhou
and
X.-Z.
Zhang
, “
Nonlinear frequency dependence of the effective acoustic attenuation from low-frequency field measurement in shallow water
,”
J. Acoust. Soc. Am.
117
(
4
),
2494
(
2005
).
25.
M. B.
Porter
and
Y.-C.
Liu
, “
Finite element ray tracing
,” in
Theoretical and Computational Acoustics
, edited by
D.
Lee
and
M. H.
Schultz
(
World Scientific
,
Singapore
,
1994
), Vol.
2
, pp.
947
953
.
You do not currently have access to this content.