Echocardiography requires imaging of the heart with sound propagating at varying angles relative to the predominant direction of the myofibers. The degree of anisotropy of attenuation can significantly influence ultrasonic imaging and tissue characterization measurements in vivo. This study quantifies the anisotropy of attenuation of freshly excised myocardium at frequencies typical of echocardiographic imaging. Results show a significantly larger anisotropy than previously reported in specimens of locally unidirectional myofibers. Through-transmission radio frequency-based measurements were performed on specimens from 12 ovine and 12 bovine hearts. Although ovine hearts are closer in size to human, the larger size of bovine hearts offers the potential for specimens in which myofibers are more nearly unidirectionally aligned. The attenuation coefficient increased approximately linearly with frequency. The mean slope of attenuation with frequency was 3–4 times larger for propagation parallel than for perpendicular to the myofibers. At perpendicular insonification, slopes between ovine and bovine myocardium were approximately equal. However, attenuation in bovine specimens was larger for angles approaching parallel. The difference in results for parallel appears consistent with what might be expected from increased myofiber curvature associated with smaller lamb hearts. Quantitative knowledge of anisotropy of attenuation may be useful in understanding mechanisms underlying the interaction of ultrasound with myocardium.

1.
Aygen
,
M.
, and
Popp
,
R. L.
(
1987
). “
Influence of the orientation of myocardial fibers on echocardiographic images
,”
Am. J. Cardiol.
60
,
147
152
.
2.
Baldwin
,
S. L.
,
Holland
,
M. R.
,
Sosnovik
,
D. E.
, and
Miller
,
J. G.
(
2005
). “
Effects of region-of-interest length on estimates of myocardial ultrasonic attenuation and backscatter
,”
Med. Phys.
32
,
418
426
.
3.
Baldwin
,
S. L.
,
Marutyan
,
K. R.
,
Yang
,
M.
,
Wallace
,
K. D.
,
Holland
,
M. R.
, and
Miller
,
J. G.
(
2005
). “
Estimating myocardial attenuation properties from m-mode ultrasonic backscatter
,”
Ultrasound Med. Biol.
31
,
477
484
.
4.
Baldwin
,
S. L.
,
Yang
,
M.
,
Marutyan
,
K. R.
,
Wallace
,
K. D.
,
Holland
,
M. R.
, and
Miller
,
J. G.
(
2004
). “
The influence of bright intramural echoes on estimates of ultrasonic attenuation from backscattered ultrasound in excised myocardium
,”
Ultrason. Imaging
26
,
233
249
.
5.
Baldwin
,
S. L.
,
Yang
,
M.
,
Marutyan
,
K. R.
,
Wallace
,
K. D.
,
Holland
,
M. R.
, and
Miller
,
J. G.
(
2005
). “
Measurements of the anisotropy of ultrasonic velocity in freshly excised and formalin-fixed myocardial tissue
,”
J. Acoust. Soc. Am.
118
,
505
513
.
6.
Barzilai
,
B.
,
Madaras
,
E. I.
,
Sobel
,
B. E.
,
Miller
,
J. G.
, and
Perez
,
J. E.
(
1984
). “
Effects of myocardial contraction on ultrasonic backscatter before and after ischemia
,”
Am. J. Physiol. Heart Circ. Physiol.
16 247
,
H478
H483
.
7.
Brandenburger
,
G. H.
,
Klepper
,
J. R.
,
Miller
,
J. G.
, and
Snyder
,
D. L.
(
1981
). “
Effects of anisotropy in the ultrasonic attenuation of tissue on computed tomography
,”
Ultrason. Imaging
3
,
113
143
.
8.
Busse
,
L. J.
, and
Miller
,
J. G.
(
1981a
). “
Detection of spatially nonuniform ultrasonic radiation with phase sensitive (piezoelectric) and phase insensitive (acoustoelectric) receivers
,”
J. Acoust. Soc. Am.
70
,
1377
1386
.
9.
Busse
,
L. J.
, and
Miller
,
J. G.
(
1981b
). “
Response characteristics of a finite aperture, phase insensitive ultrasonic receiver based upon the acoustoelectric effect
,”
J. Acoust. Soc. Am.
70
,
1370
1376
.
10.
Castaldo
,
M.
,
Funaro
,
S.
,
Veneroso
,
G.
, and
Agati
,
L.
(
2000
). “
Detection of residual tissue viability within the infarct zone in patients with acute myocardial infarction: Ultrasonic integrated backscatter analysis versus dobutamine stress echocardiography
,”
J. Am. Soc. Echocardiogr
13
,
358
367
.
11.
Ciliberto
,
G. R.
,
Pingitore
,
A.
,
Mangiavacchi
,
M.
,
Alberti
,
A.
,
Paterni
,
M.
, and
Picano
,
E.
(
1996
). “
The clinical value of blunting of cyclic gray level variation for the detection of acute cardiac rejection: A two-dimensional, doppler, and videodensitometric ultrasound study
,”
J. Am. Soc. Echocardiogr
9
,
306
313
.
12.
Colonna
,
P.
,
Montisci
,
R.
,
Galiuto
,
L.
,
Meloni
,
L.
, and
Iliceto
,
S.
(
1999
). “
Effects of acute myocardial ischemia on intramyocardial contraction heterogeneity: A study performed with ultrasound integrated backscatter during transesophageal atrial pacing
,”
Circulation
100
,
1770
1776
.
13.
D’Hooge
,
J.
,
Bijnens
,
B.
,
Jamal
,
F.
,
Pislaru
,
C.
,
Pislaru
,
S.
,
Thoen
,
J.
,
Suetens
,
P.
,
Van de Werf
,
F.
,
Angermann
,
C.
,
Rademakers
,
F. E.
,
Herregods
,
M. C.
, and
Sutherland
,
G. R.
(
2000
). “
High frame rate myocardial integrated backscatter. Does this change our understanding of this acoustic parameter
?”
Eur. J. Echocardiogr.
1
,
32
41
.
14.
Di Bello
,
V.
,
Pedrinelli
,
R.
,
Bertini
,
A.
,
Giorgi
,
D.
,
Talini
,
E.
,
Dell’Omo
,
G.
, and
Mariani
,
M.
(
2001
). “
Cyclic variation of the myocardial integrated backscatter signal in hypertensive cardiopathy: A preliminary study
,”
Coron Artery Dis.
12
,
267
275
.
15.
Dwyer
,
C.
,
Allen
,
P.
, and
Buckin
,
V.
(
2000
). “
Temperature dependence of the ultrasonic parameters of bovine muscle: Effects of muscle anisotropy
,”
13th Conference of the European Colloid and Interface Society, Trinity College
, Vol.
115
, Dublin, Ireland (
Springer-Verlag
,
Berlin
), pp.
282
286
.
16.
Fei
,
D. Y.
, and
Shung
,
K. K.
(
1985
). “
Ultrasonic backscatter from mammalian tissues
,”
J. Acoust. Soc. Am.
78
,
871
876
.
17.
Fei
,
D. Y.
,
Shung
,
K. K.
, and
Wilson
,
T. M.
(
1987
). “
Ultrasonic backscatter from bovine tissues: Variation with pathology
,”
J. Acoust. Soc. Am.
81
,
166
172
.
18.
Finch-Johnston
,
A. E.
,
Gussak
,
H. M.
,
Mobley
,
J.
,
Holland
,
M. R.
,
Petrovic
,
O.
,
Perez
,
J. E.
, and
Miller
,
J. G.
(
2000
). “
Cyclic variation of integrated backscatter: Dependence of time delay on the echocardiographic view used and the myocardial segment analyzed
,”
J. Am. Soc. Echocardiogr
13
,
9
17
.
19.
Goens
,
M. B.
,
Karr
,
S. S.
, and
Martin
,
G. R.
(
1996
). “
Cyclic variation of integrated ultrasound backscatter: Normal and abnormal myocardial patterns in children
,”
J. Am. Soc. Echocardiogr
9
,
616
621
.
20.
Greenbaum
,
R. A.
,
Ho
,
S. Y.
,
Gibson
,
D. G.
,
Becker
,
A. E.
, and
Anderson
,
R. H.
(
1981
). “
Left ventricular fibre architecture in man
,”
Br. Heart J.
45
,
248
263
.
21.
Hancock
,
J. E.
,
Cooke
,
J. C.
,
Chin
,
D. T.
, and
Monaghan
,
M. J.
(
2002
). “
Determination of successful reperfusion after thrombolysis for acute myocardial infarction: A noninvasive method using ultrasonic tissue characterization that can be applied clinically
,”
Circulation
105
,
157
161
.
22.
Harrington
,
K. B.
,
Rodriguez
,
F.
,
Cheng
,
A.
,
Langer
,
F.
,
Ashikaga
,
H.
,
Daughters
,
G. T.
,
Criscione
,
J. C.
,
Ingels
,
N. B.
, and
Miller
,
D. C.
(
2005
). “
Direct measurement of transmural laminar architecture in the anterolateral wall of the ovine left ventricle: New implications for wall thickening mechanics
,”
Am. J. Physiol. Heart Circ. Physiol.
288
,
H1324
H1330
.
23.
Holland
,
M. R.
,
Wallace
,
K. D.
, and
Miller
,
J. G.
(
2004
). “
Potential relationships among myocardial stiffness, the measured level of myocardial backscatter (“image brightness”) and the magnitude of the systematic variation of backscatter (cyclic variation) over the heart cycle
,”
J. Am. Soc. Echocardiogr
17
,
1131
1137
.
24.
Holland
,
M. R.
,
Wilkenshoff
,
U. M.
,
Finch-Johnston
,
A. E.
,
Handley
,
S. M.
,
Perez
,
J. E.
, and
Miller
,
J. G.
(
1998
). “
Effects of myocardial fiber orientation in echocardiography: Quantitative measurements and computer simulation of the regional dependence of backscattered ultrasound in the parasternal short-axis view
,”
J. Am. Soc. Echocardiogr
11
,
929
937
.
25.
Klepper
,
J. R.
,
Brandenburger
,
G. H.
,
Mimbs
,
J. W.
,
Sobel
,
B. E.
, and
Miller
,
J. G.
(
1981
). “
Application of phase-insensitive detection and frequency-dependent measurements to computed ultrasonic attenuation tomography
,”
IEEE Trans. Biomed. Eng.
BME-28
,
186
201
.
26.
Kovacs
,
A.
,
Courtois
,
M. R.
,
Weinheimer
,
C. J.
,
Posdamer
,
S. H.
,
Wallace
,
K. D.
,
Holland
,
M. R.
, and
Miller
,
J. G.
(
2004
). “
Ultrasonic tissue characterization of the mouse myocardium: Successful in vivo cyclic variation measurements
,”
J. Am. Soc. Echocardiogr
17
,
883
892
.
27.
LeGrice
,
I. J.
,
Smaill
,
B. H.
,
Chai
,
L. Z.
,
Edgar
,
S. G.
,
Gavin
,
J. B.
, and
Hunter
,
P. J.
(
1995
). “
Laminar structure of the heart: Ventricular myocyte arrangement and connective tissue architecture in the dog
,”
Am. J. Physiol. Heart Circ. Physiol.
38 269
,
H571
H582
.
28.
Melton
,
H. E.
, Jr.
, and
Skorton
,
D. J.
(
1983
). “
Rational gain compensation for attenuation in cardiac ultrasonography
,”
Ultrason. Imaging
5
,
214
228
.
29.
Miller
,
J. G.
,
Yuhas
,
D. E.
,
Mimbs
,
J. W.
,
Dierker
,
S. B.
,
Busse
,
L. J.
,
Laterra
,
J. J.
,
Weiss
,
A. N.
, and
Sobel
,
B. E.
(
1976
). “
Ultrasonic tissue characterization: Correlation between biochemical and ultrasonic indices of myocardial injury
,”
Proc. IEEE Ultrasonics Symposium
, Anapolis, 76 CH 1120–5SU, pp.
33
43
.
30.
Mimbs
,
J. W.
,
O’Donnell
,
M.
,
Bauwens
,
D.
,
Miller
,
J. G.
, and
Sobel
,
B. E.
(
1980
). “
The dependence of ultrasonic attenuation and backscatter on collagen content in dog and rabbit hearts
,”
Circ. Res.
47
,
49
58
.
31.
Mottley
,
J. G.
,
Glueck
,
R. M.
,
Perez
,
J. E.
,
Sobel
,
B. E.
, and
Miller
,
J. G.
(
1984
). “
Regional differences in the cyclic variation of myocardial backscatter that parallel regional differences in contractile performance
,”
J. Acoust. Soc. Am.
76
,
1617
1623
.
32.
Mottley
,
J. G.
, and
Miller
,
J. G.
(
1988
). “
Anisotropy of the ultrasonic backscatter of myocardial tissue: I. Theory and measurements in vitro
,”
J. Acoust. Soc. Am.
83
,
755
761
.
33.
Mottley
,
J. G.
, and
Miller
,
J. G.
(
1990
). “
Anisotropy of the ultrasonic attenuation in soft tissues: Measurements in vitro
,”
J. Acoust. Soc. Am.
88
,
1203
1210
.
34.
Naito
,
J.
,
Masuyama
,
T.
,
Tanouchi
,
J.
,
Mano
,
T.
,
Kondo
,
H.
,
Yamamoto
,
K.
,
Nagano
,
R.
,
Hori
,
M.
,
Inoue
,
M.
, and
Kamada
,
T.
(
1994
). “
Analysis of transmural trend of myocardial integrated ultrasound backscatter for differentiation of hypertrophic cardiomyopathy and ventricular hypertrophy due to hypertension
,”
J. Am. Coll. Cardiol.
24
,
517
524
.
35.
O’Donnell
,
M.
,
Mimbs
,
J. W.
,
Sobel
,
B. E.
, and
Miller
,
J. G.
(
1977
). “
Ultrasonic attenuation in normal and ischemic myocardium
,”
Proc. Second International Symposium on Ultrasonic Tissue Characterization
(
National Bureau of Standards Spec. Publ. 525
,
U. S. Government Printing Office, Washington DC
,
1979
), pp.
63
71
.
36.
Ohara
,
Y.
,
Hiasa
,
Y.
,
Hosokawa
,
S.
,
Suzuki
,
N.
,
Takahashi
,
T.
,
Kishi
,
K.
, and
Ohtani
,
R.
(
2005
). “
Ultrasonic tissue characterization predicts left ventricular remodeling in patients with acute anterior myocardial infarction after primary coronary angioplasty
,”
J. Am. Soc. Echocardiogr
18
,
638
643
.
37.
Pasquet
,
A.
,
D’Hondt
,
A. M.
,
Melin
,
J. A.
, and
Vanoverschelde
,
J. L.
(
1998
). “
Relation of ultrasonic tissue characterization with integrated backscatter to contractile reserve in chronic left ventricular ischemic dysfunction
,”
Am. J. Cardiol.
81
,
68
74
.
38.
Perez
,
J. E.
,
Klein
,
S. C.
,
Prater
,
D. M.
,
Fraser
,
C. E.
,
Cardona
,
H.
,
Waggoner
,
A. D.
,
Holland
,
M. R.
,
Miller
,
J. G.
, and
Sobel
,
B. E.
(
1992
). “
Automated, on-line quantification of left ventricular dimensions and function by echocardiography with backscatter imaging and lateral gain compensation
,”
Am. J. Cardiol.
70
,
1200
1205
.
39.
Pislaru
,
C.
,
D’Hooge
,
J.
,
Pislaru
,
S. V.
,
Brandt
,
E.
,
Cipic
,
R.
,
Angermann
,
C. E.
,
Van de Werf
,
F. J.
,
Bijnens
,
B.
,
Herregods
,
M.
, and
Sutherland
,
G. R.
(
2001
). “
Is there a change in myocardial nonlinearity during the cardiac cycle
?”
Ultrasound Med. Biol.
27
,
389
398
.
40.
Recchia
,
D.
,
Miller
,
J. G.
, and
Wickline
,
S. A.
(
1993
). “
Quantification of ultrasonic anisotropy in normal myocardium with lateral gain compensation of two-dimensional integrated backscatter images
,”
Ultrasound Med. Biol.
19
,
497
505
.
41.
Rijsterborgh
,
H.
,
Mastik
,
F.
,
Lancee
,
C. T.
,
Verdouw
,
P.
,
Roelandt
,
J.
, and
Bom
,
N.
(
1993
). “
Ultrasound myocardial integrated backscatter signal processing: Frequency domain versus time domain
,”
Ultrasound Med. Biol.
19
,
211
219
.
42.
Sagar
,
K. B.
,
Pelc
,
L. R.
,
Rhyne
,
T. L.
,
Komorowski
,
R. A.
,
Wann
,
L. S.
, and
Warltier
,
D. C.
(
1990
). “
Role of ultrasonic tissue characterization to distinguish reversible from irreversible myocardial injury
,”
J. Am. Soc. Echocardiogr
3
,
471
477
.
43.
Sosnovik
,
D. E.
,
Baldwin
,
S. L.
,
Holland
,
M. R.
, and
Miller
,
J. G.
(
2001a
). “
Transmural variation of myocardial attenuation and its potential effect on contrast-mediated estimates of regional myocardial perfusion
,”
J. Am. Soc. Echocardiogr
14
,
782
788
.
44.
Sosnovik
,
D. E.
,
Baldwin
,
S. L.
,
Lewis
,
S. H.
,
Holland
,
M. R.
, and
Miller
,
J. G.
(
2001b
). “
Transmural variation of myocardial attenuation measured with a clinical imager
,”
Ultrasound Med. Biol.
27
,
1643
1650
.
45.
Streeter
,
D. D.
, Jr.
,
Spotnitz
,
H. M.
,
Patel
,
D. P.
,
Ross
,
J.
, Jr.
, and
Sonnenblick
,
E. H.
(
1969
). “
Fiber orientation in the canine left ventricle during diastole and systole
,”
Circ. Res.
24
,
339
347
.
46.
Tu
,
H.
,
Varghese
,
T.
,
Madsen
,
E. L.
,
Chen
,
Q.
, and
Zagzebski
,
J. A.
(
2003
). “
Ultrasound attenuation imaging using compound acquisition and processing
,”
Ultrason. Imaging
25
,
245
261
.
47.
van der Steen
,
A. F.
,
Rijsterborgh
,
H.
,
Lancee
,
C. T.
,
Mastik
,
F.
,
Krams
,
R.
,
Verdouw
,
P. D.
,
Roelandt
,
J. R.
, and
Bom
,
N.
(
1997
). “
Influence of data processing on cyclic variation of integrated backscatter and wall thickness in stunned porcine myocardium
,”
Ultrasound Med. Biol.
23
,
405
414
.
48.
van der Steen
,
A. F.
,
Rijsterborgh
,
H.
,
Mastik
,
F.
,
Lancee
,
C. T.
,
van Hoorn
,
W. M.
, and
Bom
,
N.
(
1991
). “
Influence of attenuation on measurements of ultrasonic myocardial integrated backscatter during cardiac cycle (an in vitro study)
,”
Ultrasound Med. Biol.
17
,
869
877
.
49.
Vandenberg
,
B. F.
,
Stuhlmuller
,
J. E.
,
Rath
,
L.
,
Kerber
,
R. E.
,
Collins
,
S. M.
,
Melton
,
H. E.
, and
Skorton
,
D. J.
(
1991
). “
Diagnosis of recent myocardial infarction with quantitative backscatter imaging: Preliminary studies
,”
J. Am. Soc. Echocardiogr
4
,
10
18
.
50.
Verdonk
,
E. D.
,
Hoffmeister
,
B. K.
,
Wickline
,
S. A.
, and
Miller
,
J. G.
(
1996
). “
Anisotropy of the slope of ultrasonic attenuation in formalin-fixed human myocardium
,”
J. Acoust. Soc. Am.
99
,
3837
3843
.
51.
Vered
,
Z.
,
Mohr
,
G. A.
,
Barzilai
,
B.
,
Gessler
,
C. J.
, Jr.
,
Wickline
,
S. A.
,
Wear
,
K. A.
,
Shoup
,
T. A.
,
Weiss
,
A. N.
,
Sobel
,
B. E.
,
Miller
,
J. G.
, and
Perez
,
J. E.
(
1989
). “
Ultrasound integrated backscatter tissue characterization of remote myocardial infarction in human subjects
,”
J. Am. Coll. Cardiol.
13
,
84
91
.
52.
Wear
,
K. A.
,
Milunski
,
M. R.
,
Wickline
,
S. A.
,
Perez
,
J. E.
,
Sobel
,
B. E.
, and
Miller
,
J. G.
(
1989
). “
Contraction-related variation in frequency dependence of acoustic properties of canine myocardium
,”
J. Acoust. Soc. Am.
86
,
2067
2072
.
53.
Wickline
,
S. A.
,
Thomas
,
L. J.
, III
,
Miller
,
J. G.
,
Sobel
,
B. E.
, and
Perez
,
J. E.
(
1986
). “
Sensitive detection of the effects of reperfusion on myocardium by ultrasonic tissue characterization with integrated backscatter
,”
Circulation
74
,
389
400
.
54.
Yuda
,
S.
,
Dart
,
J.
,
Najos
,
O.
, and
Marwick
,
T. H.
(
2002
). “
Use of cyclic variation of integrated backscatter to assess contractile reserve and myocardial viability in chronic ischemic left ventricular dysfunction
,”
Echocardiogr.
19
,
279
287
.
You do not currently have access to this content.