This paper provides evidence for electrical 1f noise as the dominant source of excess noise in piezoresistive microelectromechanical systems (MEMS) microphones. In piezoresistors, the fundamental noise sources may be divided into frequency independent thermal noise and frequency dependent 1f excess noise dominating at low frequencies. Noise power spectra are presented for both commercial and research-prototype MEMS piezoresistive microphones as a function of applied voltage bias for both free and blocked membranes. The contributions of various mechanical and electrical noise sources are compared using a lumped noise equivalent circuit of the piezoresistive microphone. The bias dependence and membrane independence of the output noise indicate that the primary source of the excess noise is electrical in origin.

1.
R.
Schellin
and
G.
Hess
, “
A Silicon subminiature microphone based on piezoresistive polysilicon strain gauges
,”
Sens. Actuators, A
32
,
555
559
(
1992
).
2.
M.
Sheplak
,
K. S.
Breuer
, and
M. A.
Schmidt
, “
A wafer-bonded silicon-nitride membrane microphone with dielectrically-isolated single-crystal silicon piezoresistors
,”
Technical Digest, Solid-State Sensors and Actuators Workshop
,
Hilton Head, SC
(
TRF
, Cleveland Heights, Ohio,
1998
), pp.
23
26
.
3.
D. P.
Arnold
,
T.
Nishida
, and
M.
Sheplak
, “
Piezoresistive microphone for aeroacoustic measurement
,”
Proceedings of 2001 ASME International Mechanical Engineering Congress and Exposition
, New York MEMS-23841 (
ASME
, New York, New York,
2001
).
4.
V.
Chandrasekaran
,
E. M.
Chow
,
T. W.
Kenny
,
T.
Nishida
,
L.
Cattafesta
,
B. V.
Sankar
, and
M.
Sheplak
, “
Thermoelastically actuated acoustic proximity sensor with integrated through-wafer interconnects
,”
Technical Digest, Solid-State Sensor and Actuator Workshop
(
TRF
, Cleveland Heights, Ohio,
2002
), pp.
102
107
.
5.
Endevco. Model 8510B-1, http://www.endevco.com, [cited; Available from: http://www.endevco.com (
2005
).
6.
Kulite. Model MIC-093 http://www.kulite.com, [cited; Available from: http://www.kulite.com(
2005
).
7.
R. R.
Spencer
,
B. M.
Fleischer
,
P. W.
Barth
, and
J. B.
Angell
, “
A theoretical study of transducer noise in piezoresistive and capacitive silicon pressure sensors
,”
IEEE Trans. Electron Devices
35
(
8
),
1289
1297
(
1988
).
8.
T. B.
Gabrielson
, “
Mechanical thermal noise in micromachined acoustic and vibration sensors
,”
IEEE Trans. Electron Devices
40
(
5
),
903
909
(
1993
).
9.
H.
Nyquist
, “
Thermal agitation of electric charge in conductors
,”
Phys. Rev.
32
,
110
113
(
1928
).
10.
J. B.
Johnson
, “
Thermal agitation of electricity in conductors
,”
Phys. Rev.
32
,
97
109
(
1928
).
11.
F. N.
Hooge
, “
1f Noise is no surface effect
,”
Phys. Lett. A
29
(
3
),
139
140
(
1969
).
12.
A.
McWhorter
, “
1f Noise and germanium surface properties
,”
Semiconductor Surface Physics
(
University of Pennsylvania
, Philadelphia,
1957
), pp.
207
228
.
13.
A. J.
Zuckerwar
,
T. R.
Kuhn
, and
R. M.
Serbyn
, “
Background noise in piezoresistive, electret condenser, and ceramic microphones
,”
J. Acoust. Soc. Am.
113
(
6
),
2947
3437
(
2003
).
14.
A. J.
Zuckerwar
and
K. C. T.
Ngo
, “
Measured 1f noise in the membrane motion of condenser microphones
,”
J. Acoust. Soc. Am.
95
(
3
),
1419
1425
(
1994
).
15.
O.
Hansen
and
A.
Boisen
, “
Noise in piezoresistive atomic force microscopy
,”
Nanotechnology
10
,
51
60
(
1999
).
16.
J. A.
Harley
and
T. W.
Kenny
, “
High-sensitivity piezoresistive cantilevers under 1000A thick
,”
Appl. Phys. Lett.
75
(
2
),
289
291
(
1999
).
17.
A.
Partridge
,
K.
Reynolds
,
B. W.
Chui
,
E. M.
Chow
,
A. M.
Fitzgerald
,
L.
Zhang
,
N. I.
Maluf
, and
T. W.
Kenny
, “
A high-performance planar piezoresistive accelerometer
,”
J. Microelectromech. Syst.
9
(
1
),
8
56
(
2000
).
18.
F. N.
Hooge
, “
1f Noise
,”
Physica B
83
,
14
23
(
1976
).
19.
A.
Van der Ziel
, “
Noise in solid-state devices and circuits
(
Wiley
, New York,
1986
).
20.
H. L.
Chau
and
K. D.
Wise
, “
Noise due to Brownian motion in ultrasensitive solid-state pressure sensors
,”
IEEE Trans. Electron Devices
ED-34
(
4
),
859
864
(
1987
).
21.
O. N.
Tufte
and
D.
Long
, “
Recent developments in semiconductor piezoresistive devices
,”
Solid-State Electron.
6
,
323
338
(
1963
).
22.
M.
Sheplak
and
J.
Dugundji
, “
Large deflections of clamped circular plates under initial tension and transitions to membrane behavior
,”
J. Appl. Mech.
65
,
107
115
(
1998
).
23.
R.
Saini
,
S.
Bhardwaj
,
T.
Nishida
, and
M.
Sheplak
, “
Scaling relations for piezoresistive microphones
,”
Proceedings of ASME IMECE 2000, International Mechanical Engineering Congress and Exposition
, MEMS-Vol. 2,
Orlando, FL
(
ASME
, New York, New York,
2000
), pp.
241
248
.
24.
M.
Rossi
, “
Acoustics and Electroacoustics
” (
Artech House
, Norwood, MA,
1988
).
25.
J.
Bryzek
, “
Modeling performance of piezoresistive pressure sensors
,”
Technical Digest, Solid-State Sensors and Actuators
(
TRF
, Cleveland Heights, Ohio,
1985
), pp.
168
173
.
26.
R.
Saini
, “
Design of a MEMS based piezoresistive microphone
, M.S. thesis, Aerospace Engineering, Mechanics, and Engineering Science,
University of Florida
, Gainesville,
2001
.
27.
C. D.
Motchenbacher
and
J. A.
Connelly
,
Low-Noise Electronic System Design
(
Wiley
, New York,
1993
).
28.
J. H. J.
Lorteije
and
A. M. H.
Hoppenbrouwers
, “
Amplitude modulation by 1f noise in resistors results in 1/Defta f noise
,”
Philips Res. Rep.
26
,
29
39
(
1971
).
29.
Bruel and Kjaer, Product Data, http://www.bksv.com/pdf/Bp0100.pdf
30.
K. C. T.
Ngo
and
A. J.
Zuckerwar
, “
Acoustic isolation vessel for measurement of the background noise in microphones
,”
J. Acoust. Soc. Am.
93
(
5
),
2974
2980
(
1993
).
You do not currently have access to this content.