A number of single-frequency resonant modes in click evoked otoacoustic emissions (OAEs) was investigated. The OAE modes were identified by means of an adaptive approximation method based on the matching pursuit (MP) algorithm. The signals were decomposed into basic waveforms coming from a very large and redundant dictionary of Gabor functions. The study was performed on transiently evoked otoacoustic emissions (TEOAEs) from left and right ears of 108 subjects. The correspondence between waveforms found by the procedure and resonant modes was shown (both for simulated noisy data and for single-person TEOAEs). The decomposition of TEOAEs made distinction between short and long-lasting components possible. The number of main resonant modes was studied by means of different criteria and they all led to similar results, indicating that the main features of the signal are explained on average by 10 waveforms. The same number of resonant modes for the right ear accounted for more energy than for the left ear.

1.
Aidan
,
D.
,
Lestang
,
P.
,
Avan
,
P.
, and
Bonfils
,
P.
(
1997
). “
Characteristics of transient-evoked otoacoustic emissions (TEOEs) in neonates
,”
Acta Oto-Laryngol.
.
117
,
25
30
.
2.
Bell
,
A.
, and
Fletcher
,
N. H.
(
2004
). “
The cochlear amplifier as a standing wave: Squirting waves between rows of outer hair cells?
,”
J. Acoust. Soc. Am.
116
,
1016
1024
.
3.
Collet
,
L.
,
Gartner
,
M.
,
Veuillet
,
E.
,
Moulin
,
A.
, and
Morgon
,
A.
(
1993
). “
Evoked and spontaneous otoacoustic emissions: A comparison of neonates and adults
,”
Brain Dev.
15
,
249
252
.
4.
Driscoll
,
C.
,
Kei
,
J.
, and
McPherson
,
B.
(
2002
). “
Handedness effects on transient evoked otoacoustic emissions in schoolchildren
,”
J. Am. Acad. Audiol
13
,
403
406
.
5.
Elberling
,
C.
,
Parbo
,
N. J.
,
Johnsen
,
N. J.
, and
Bagi
,
P.
(
1985
). “
Evoked acoustic emissions: Clinical application
,”
Acta Oto-Laryngol., Suppl.
421
,
77
85
.
6.
Ismail
,
H.
, and
Thornton
,
A. R.
(
2003
). “
The interaction between ear and sex differences and stimulus rate
,”
Hear. Res.
179
,
97
103
.
7.
Jedrzejczak
,
W. W.
,
Blinowska
,
K. J.
, and
Konopka
,
W.
(
2005
). “
Time-frequency analysis of transiently evoked otoacoustic emissions of subjects exposed to noise
,”
Hear. Res.
205
,
249
255
.
8.
Jedrzejczak
,
W. W.
,
Blinowska
,
K. J.
,
Konopka
,
W.
,
Grzanka
,
A.
, and
Durka
,
P. J.
(
2004
). “
Identification of otoacoustic emission components by means of adaptive approximations
,”
J. Acoust. Soc. Am.
115
,
2148
2158
.
9.
Kei
,
J.
,
McPherson
,
B.
,
Smyth
,
V.
,
Latham
,
S.
, and
Loscher
,
J.
(
1997
). “
Transient evoked otoacoustic emissions in infants: Effects of gender, ear asymmetry and activity status
,”
Audiology
36
,
61
71
.
10.
Lucertini
,
M.
,
Moleti
,
A.
, and
Sisto
,
R.
(
2002
). “
On the detection of early cochlear damage by otoacoustic emission analysis
,”
J. Acoust. Soc. Am.
111
,
928
978
.
11.
Morlet
,
T.
,
Lapillonne
,
A.
, and
Ferber
,
C.
(
1995
). “
Spontaneous otoacoustic emissions in preterm neonates: Prevalence and gender effect
,”
Hear. Res.
90
,
44
54
.
12.
Newmark
,
M.
,
Merlob
,
P.
,
Bresloff
,
I.
,
Olsha
,
M.
, and
Attias
,
J.
(
1997
). “
Click evoked otoacoustic emissions: Inter-aural and gender differences in newborns
,”
J. Basic Clin. Physiol. Pharmacol.
8
,
133
139
.
13.
Penner
,
M. J.
,
Glotzbach
,
L.
, and
Huang
,
T.
(
1993
). “
Spontaneous otoacoustic emissions: Measurement and data
,”
Hear. Res.
68
,
229
237
.
14.
Probst
,
R.
,
Lonsbury-Martin
,
B. L.
, and
Martin
,
G. K.
(
1991
). “
A review of otoacoustic emissions
,”
J. Acoust. Soc. Am.
89
,
2027
2067
.
15.
Robinette
,
M. S.
, and
Glattke
,
T. J.
(
2002
).
Otoacoustic Emissions Clinical Applications
, 2nd ed. (
Thieme
,
New York
), Part II, Chap. 4, pp.
106
108
.
16.
Sininger
,
Y. S.
, and
Cone-Wesson
,
B.
(
2004
). “
Asymmetric cochlear processing mimics hemispheric specialization
,”
Science
305
,
1581
.
17.
Sisto
,
R.
, and
Moleti
,
A.
(
1999
). “
Modelling otoacoustic emissions by active nonlinear oscillators
,”
J. Acoust. Soc. Am.
106
,
1893
1906
.
18.
Sisto
,
R.
,
Moleti
,
A.
, and
Lucertini
,
M.
(
2001
). “
Spontaneous otoacoustic emissions and relaxation dynamics of long decay time OAEs in audiometrically normal and impaired subjects
,”
J. Acoust. Soc. Am.
109
,
638
647
.
19.
Talmadge
,
C. L.
,
Tubis
,
A.
,
Long
,
G. R.
, and
Piskorski
,
P.
(
1998
). “
Modeling otoacoustic emission and hearing threshold fine structures
,”
J. Acoust. Soc. Am.
104
,
1517
1543
.
20.
Talmadge
,
C. L.
,
Tubis
,
A.
,
Wit
,
H. P.
, and
Long
,
G. R.
(
1991
). “
Are spontaneous otoacoustic emissions generated by self-sustained cochlear oscillators?
,”
J. Acoust. Soc. Am.
89
,
2391
2399
.
21.
Wit
,
H. P.
,
Langevoort
,
J. C.
, and
Ritsma
,
R. J.
(
1981
). “
Frequency spectra of cochlear acoustic emissions (Kemp-echoes)
,”
J. Acoust. Soc. Am.
70
,
437
445
.
22.
Zimatore
,
G.
,
Hatzopoulos
,
S.
,
Giuliani
,
A.
,
Martini
,
A.
, and
Colosimo
,
A.
(
2002
). “
Comparison of transient otoacoustic emission responses from neonatal and adult ears
,”
J. Appl. Physiol.
92
,
2521
2528
.
You do not currently have access to this content.