The goal is to interpret and calculate the “niche effect” for the airborne sound transmission through a specimen mounted inside an aperture in the wall between the source and receiving reverberation rooms. The low-frequency sound insulation is known to be worse for the specimen placed at the center than for the specimen mounted at either edge of the aperture. As shown, the aperture with a tested specimen can be simulated at low frequencies as a triple partition where the middle element is the specimen and the role of the edge leaves is played by the air masses entrained at the aperture edges. With a centrally located specimen, such a triple system is symmetric and has two main natural frequencies close together. In this case, the resonant transmission is higher than for the edge arrangement simulated as a double system with one natural frequency. Analogous resonant phenomena are known to reduce the low-frequency transmission loss for symmetric triple windows or solid walls with identical air gaps and lightweight boards on both sides. The theoretical results obtained for the mechanical and acoustical models are in a good agreement with the experimental data.

1.
H.
Reissner
, “
Der senkrechte und shräge durchtutt einer in einem flüssingen medium erzeugten ebenen dilatationswelle durch eine in diesem medium befindliche planparallele, feste platte (“Normal and oblique transmission of a plain wave propagating in fluid through a flat solid panel submerged into this fluid”)
,”
Helv. Phys. Acta
11
,
140
155
(
1938
).
2.
L.
Cremer
, “
Theorie der schalldämmung wände bei schrägen einfall (“Theory of sound insulation of a panel at oblique sound incidence”)
,”
Akust. Zeits.
7
,
81
104
(
1942
).
3.
A.
London
, “
Transmission of reverberant sound through double walls
,”
J. Acoust. Soc. Am.
22
,
270
279
(
1950
).
4.
K. A.
Mulholland
,
H. D.
Parbrook
, and
A.
Cummings
, “
The transmission loss of double panels
,”
J. Sound Vib.
6
,
324
334
(
1967
).
5.
R.
Vinokur
, “
Transmission loss of triple partitions at low frequencies
,”
Appl. Acoust.
29
,
15
24
(
1990
).
6.
A.
Cummings
and
K. A.
Mulholland
, “
The transmission loss of finite size double panels in a random incidence sound field
,”
J. Sound Vib.
8
,
126
133
(
1968
).
7.
A.
Schoch
Über ein asymptotishe verhalten von erzwungenen plattenschwingungen bei hohen frequenzen (“On asymptotic law of forced vibration of panel at high frequencies”)
,”
Akust. Z.
2
,
113
128
(
1937
).
8.
E. S.
Sewell
, “
Transmission of reverberant sound through a single-leaf partition surrounded by an infinite rigid baffle
,”
J. Sound Vib.
12
,
21
32
(
1970
).
9.
E. L.
Shenderov
,
Wave Problems of Hydroacoustics
(
Sudostroenie
,
Leningrad
,
1972
) (in Russian).
10.
P.
Josse
and
R. H.
Lamure
, “
Transmission du son par une paraisimple (“Sound transmission through a single wall”)
,”
Acustica
14
,
266
280
(
1964
).
11.
A. C.
Nilsson
, “
Reduction index and boundary conditions for a wall between two rectangular rooms. Part I: Theoretical results
,”
Acustica
26
,
1
18
(
1972
).
12.
K. A.
Mulholland
and
R. H.
Lyon
, “
Sound insulation at low frequencies
,”
J. Acoust. Soc. Am.
54
,
867
878
(
1973
).
13.
H.
Romilly
, “
Exact solution for guided sound transmission through a simply supported plate
,”
Acustica
28
,
234
237
(
1973
).
14.
H.
Romilly
, “
Exact solution for guided sound transmission through a double partition
,”
J. Sound Vib.
48
,
243
249
(
1976
).
15.
R.
Vinokur
, “
Low-frequency increase of the acoustic noise reduction for lightweight panel
,”
Sov. Phys. Acoust.
29
,
239
240
(
1983
).
16.
G.
Maidanik
, “
Response of ribbed panels to reverberant acoustic fields
,”
J. Acoust. Soc. Am.
34
,
809
826
(
1962
).
17.
M. J.
Crocker
and
A. J.
Price
, “
Sound transmission using statistical energy analysis
,”
J. Sound Vib.
9
,
469
486
(
1969
).
18.
A. J.
Price
and
M. J.
Crocker
, “
Sound transmission through double panels using statistical energy analysis
,”
J. Acoust. Soc. Am.
47
,
683
693
(
1970
).
19.
M.
Heckl
, “
The tenth Sir Richard Fairey Memorial lecture: sound transmission in building
,”
J. Sound Vib.
77
,
165
189
(
1981
).
20.
A. C. C.
Warnock
, “
Influence of specimen frame on sound transmission loss measurement
,”
Appl. Acoust.
15
,
307
314
(
1982
).
21.
R. W.
Guy
and
P.
Sauer
, “
The influence of sills and reveals on sound transmission loss
,”
Appl. Acoust.
17
,
453
476
(
1984
).
22.
A.
Cops
and
M.
Minten
, “
Comparative study between the sound intensity method and the conventional two-room method to calculate the sound transmission loss of wall constructions
,”
Noise Control Eng. J.
22
,
104
111
(
1984
).
23.
R. E.
Halliwell
and
A. C. C.
Warnock
, “
Sound transmission loss: Comparison of conventional techniques with sound intensity techniques
,”
J. Acoust. Soc. Am.
77
,
2094
2103
(
1985
).
24.
R.
Vinokur
, Sound Insulation by Windows Ph.D. dissertation,
Central Research Institute of Building Physics
, Moscow, Russia,
1986
.
25.
B.-K.
Kim
,
H.-J.
Kang
,
J.-S.
Kim
,
H.-S.
Kim
, and
S.-R.
Kim
, “
Tunneling effect in sound transmissionloss determination: Theoretical approach
,”
J. Acoust. Soc. Am.
115
,
2100
2109
(
2004
).
26.
L. L.
Beranek
,
Acoustics
(
Acoustical Society of America
,
New York
,
1996
), pp.
324
327
.
27.
E 336-97 Standard Test Method for Measurement of Airborne Sound Insulation in Buildings, Annual Book of ASTM Standards 04.06,
2004
, pp.
885
894
.
28.
R. E.
Jones
, “
Intercomparisons of laboratory determinations of airborne sound transmission loss
,”
J. Acoust. Soc. Am.
66
,
148
164
(
1979
).
29.
D. B.
Pedersen
,
J.
Roland
,
G.
Raabe
, and
W.
Maysenholder
, “
Measurement of the low-frequency sound insulation of building components
,”
Acust. Acta Acust.
86
,
495
505
(
2000
).
30.
W. A.
Utley
, “
Single leaf transmission loss at low frequencies
,”
J. Sound Vib.
8
,
256
261
(
1968
).
31.
T.
Bravo
and
S. J.
Elliot
, “
Variability of low frequency sound transmission measurements
,”
J. Acoust. Soc. Am.
115
,
2986
2997
(
2004
).
32.
W. A.
Utley
and
B. L.
Fletcher
, “
Influence of edge conditions on the sound insulation of windows
,”
Appl. Acoust.
2
,
131
136
(
1969
).
33.
J. A.
Marsh
, “
The airborne sound insulation of glass: Parts 1, 2, and 3
,”
Appl. Acoust.
4
,
55
70
(
1971
;
J. A.
Marsh
,
Appl. Acoust.
4
,
131
154
(
1971
).
J. A.
Marsh
,
Appl. Acoust.
4
,
175
195
(
1971
).
34.
A.
Cops
and
H.
Myncke
, “
Sound insulation of glass by means of scale models
,”
Acustica
31
,
143
149
(
1974
).
35.
J. D.
Quirt
, “
Sound transmission through windows I. Single and double glazing
,”
J. Acoust. Soc. Am.
72
,
834
844
(
1982
).
36.
J. D.
Quirt
, “
Sound transmission through windows II. Double and triple glazing
,”
J. Acoust. Soc. Am.
74
,
532
542
(
1983
).
37.
A. C. C.
Warnock
and
J. D.
Quirt
, “
Airborne sound insulation
” in
Handbook on Acoustical Measurements and Noise Control
, edited by
C. M.
Harris
(
Acoustical Society of America
,
New York
,
1998
), p.
31
16
.
38.
E.
Skudrzyk
,
The Foundations of Acoustics
(
Springer-Verlag
,
New York
,
1971
), Chap. 17.
39.
M.
Isacovitch
,
The General Acoustics
(
Nauka
,
Moscow
,
1973
), in Russian.
40.
R.
Vinokur
, “
The relationship between the resonant and natural frequency for non-viscous systems
,”
J. Sound Vib.
267
,
187
189
(
2003
).
41.
G. A.
Korn
and
T. M.
Korn
,
Mathematical Book for Scientists and Engineers
(
McGraw-Hill
,
New York
,
1961
), Chaps. 4 and 17.
You do not currently have access to this content.