The structure of humpback whale (Megaptera novaeangliae) songs was examined using information theory techniques. The song is an ordered sequence of individual sound elements separated by gaps of silence. Song samples were converted into sequences of discrete symbols by both human and automated classifiers. This paper analyzes the song structure in these symbol sequences using information entropy estimators and autocorrelation estimators. Both parametric and nonparametric entropy estimators are applied to the symbol sequences representing the songs. The results provide quantitative evidence consistent with the hierarchical structure proposed for these songs by Payne and McVay [Science173, 587597 (1971)]. Specifically, this analysis demonstrates that: (1) There is a strong structural constraint, or syntax, in the generation of the songs, and (2) the structural constraints exhibit periodicities with periods of 6–8 and 180–400 units. This implies that no empirical Markov model is capable of representing the songs’ structure. The results are robust to the choice of either human or automated song-to-symbol classifiers. In addition, the entropy estimates indicate that the maximum amount of information that could be communicated by the sequence of sounds made is less than 1bitpersecond.

1.
Basharin
,
G. P.
(
1959
). “
On a statistical estimate for the entropy of a sequence of independent random variables
,”
Theor. Probab. Appl.
4
,
333
336
.
2.
Beecher
,
M. D.
(
1989
). “
Signalling systems for individual recognition: an information theory approach
,”
Anim. Behav.
38
,
248
261
.
3.
Breiman
,
L.
(
1957
). “
The individual ergodic theorem of information theory
,”
Ann. Math. Stat.
28
,
809
811
also 31, 809–810 (
1960
).
4.
Breiman
,
L.
(
1960
). “
A correction to ‘The individual ergodic theorem of information theory
' ”,
Ann. Math. Stat.
31
,
809
810
.
5.
Chomsky
,
N.
(
1956
). “
Three models for the description of language
,”
IRE Trans. Inf. Theory
2
,
113
124
.
6.
Chomsky
,
N.
(
1988
).
Language and Problems of Knowledge: The Managua Lectures
(
MIT Press
,
Cambridge
, MA).
7.
Cover
,
T. M.
, and
King
,
R. C.
(
1978
). “
A convergent gambling estimate of the entropy of English
,”
IEEE Trans. Inf. Theory
24
,
413
420
.
8.
Cover
,
T.
, and
Thomas
,
J.
(
1991
).
Elements of Information Theory
(
Wiley
,
NY
).
9.
D’Vincent
,
C. G.
,
Nilson
,
R. M.
, and
Hanna
,
R. E.
(
1985
). “
Vocalization and coordinated feeding behavior of the humpback whale in southeastern Alaska
,”
Sci. Rep. Whales Res. Inst.
36
,
41
47
.
10.
Duda
,
R. O.
,
Hart
,
P. E.
, and
Stork
,
D. G.
(
2001
).
Pattern Classification
, 2nd ed. (
Wiley
,
NY
).
11.
Fitch
,
W. T.
, and
Hauser
,
M. D.
(
2004
). “
Computational constraints on syntactic processing in a nonhuman primate
,”
Science
303
,
376
380
.
12.
Gentner
,
T. Q.
, and
Hulse
,
S. H.
(
1998
). “
Perceptual mechanisms for individual vocal recognition in European starlings, Sturnus vulgaris
,”
Anim. Behav.
56
,
579
594
.
13.
Good
,
I. J.
(
1953
). “
The population frequencies of species and estimation of population parameters
,”
Biometrika
40
,
237
264
.
14.
Guinee
,
L. N.
, and
Payne
,
K. B.
(
1988
). “
Rhyme-like repetitions in songs of humpback whales
,”
Ethology
79
,
295
306
.
15.
Hauser
,
M. D.
,
Chomsky
,
N.
, and
Fitch
,
W. T.
(
2002
). “
The faculty of language: What is it, who has it, and how did it evolve?
,”
Science
298
,
1569
1579
.
16.
Haykin
,
S.
(
1999
).
Neural Networks: A Comprehensive Foundation
, 2nd ed., (
Prentice–Hall
, Englewood Cliffs,
NJ
).
17.
Janik
,
V. M.
(
1999
). “
Pitfalls in the categorization of behaviour: A comparison of dolphin whistle classification methods
,”
Anim. Behav.
57
,
133
143
.
18.
Janik
,
V. M.
, and
Slater
,
P. J. B.
(
1997
). “
Vocal learning in mammals
,” in
Advances in the Study of Behavior, Volume 26
, edited by
P. J. B.
Slater
,
C.
Snowdon
,
J.
Rosenblatt
, and
M.
Milinksi
(
Academic, NY
), pp.
59
99
.
19.
Jankowski
,
C. R.
,
Vo
,
H.-D. H.
, and
Lippmann
,
R. P.
(
1995
). “
A comparison of signal processing front ends for automatic word recognition
,”
IEEE Trans. Speech Audio Process.
3
,
286
293
.
20.
Ketten
,
D. R.
(
1997
). “
Structure and function in whale ears
,”
Bioacoustics
8
,
103
135
.
21.
Khinchin
,
A. I.
(
1953
). “
The entropy concept in probability theory
,”
Usp. Mat. Nauk
8
,
3
20
[English translation in Khinchin (1957)].
22.
Khinchin
,
A. I.
(
1957
).
Mathematical Foundations of Information Theory
(
Dover
,
NY
).
23.
Kohonen
,
T.
(
2001
).
Self-Organizing Maps
, 3rd ed., (
Springer
,
NY
).
24.
Kolmogorov
,
A. N.
, (
1965
). “
Three approaches to the quantitative definition of information
,”
Probl. Inf. Transm.
1
,
1
7
.
25.
Kontoyiannis
,
I.
(
1997
). “
The complexity and entropy of literary styles
,” NSF Technical Report No. 97, Department of Statistics,
Stanford University
, Palo Alto, CA, June 1996/October 1997.
26.
Kontoyiannis
,
I.
, and
Suhov
,
Y. M.
(
1994
). “
Prefixes and the entropy rate for long-range sources
,” in
Probability, Statistics and Optimization
, edited by
F. P.
Kelly
(
Wiley
,
NY
), pp.
89
98
.
27.
Kontoyiannis
,
I.
,
Algoet
,
P. H.
,
Suhov
,
Y. M.
, and
Wyner
,
A. J.
(
1998
). “
Nonparametric entropy estimation for stationary processes and random fields, with applications to English text
,”
IEEE Trans. Inf. Theory
44
,
1319
27
.
28.
Lempel
,
A.
, and
Ziv
,
J.
(
1976
). “
On the complexity of finite sequences
,”
IEEE Trans. Inf. Theory
22
,
75
81
.
29.
Levitin
,
L. B.
, and
Reingold
,
Z.
(
1994
). “
Entropy of natural languages: Theory and experiment
,”
Chaos, Solitons Fractals
4
,
709
743
.
30.
Linde
,
Y.
,
Buzo
,
A.
, and
Gray
,
R. M.
(
1980
). “
An algorithm for vector quantizer design
,”
IEEE Trans. Commun.
28
,
84
95
.
31.
MacKay
,
D. M.
(
1972
). “
Formal analysis of communicative processes
,” in
Nonverbal Communication
, edited by
R. A.
Hinde
(
Cambridge University Press
,
Cambridge
).
32.
Marton
,
K.
, and
Shields
,
P.
(
1994
). “
Entropy and the consistent estimation of joint distributions
,”
Ann. Prob.
22
,
960
977
.
33.
Marton
,
K.
, and
Shields
,
P.
(
1996
). “
Entropy and the consistent estimation of joint distributions
,”
Ann. Prob.
24
,
541
545
.
34.
McCowan
,
B.
,
Hanser
,
S. F.
, and
Doyle
,
L. R.
(
1999
). “
Quantitative tools for comparing animal communication systems: information theory applied to bottlenose dolphin whistle repertoires
,”
Anim. Behav.
57
,
409
419
.
35.
McMillan
,
B.
(
1953
). “
The basic theorems of information theory
,”
Ann. Math. Stat.
24
,
196
219
.
36.
Miller
,
G. A.
(
1954
). “
Communication
,”
Annu. Rev. Psychol.
5
,
401
420
.
37.
Miller
,
G. A.
, and
Chomsky
,
N.
(
1963
). “
Finitary models of language users
,” in
Handbook of Mathematical Psychology
, edited by
R. D.
Luce
,
R. R.
Bush
, and
E.
Galanter
(
Wiley
,
NY
), pp.
419
492
.
38.
Miller
,
P. J. O.
,
Biassoni
,
N.
,
Samuels
,
A.
, and
Tyack
,
P. L.
(
2000
). “
Whale songs lengthen in response to sonar
,”
Nature (London)
405
,
903
.
39.
Muramatsu
,
J.
, and
Kanaya
,
F.
(
1999
). “
Almost-sure variable-length source coding theorems for general sources
,”
IEEE Trans. Inf. Theory
45
,
337
342
.
40.
Noad
,
M.
,
Cato
,
D. H.
, and
Bryden
,
M. M.
(
2000
) “
Cultural revolution in whale songs
,”
Nature (London)
408
,
537
.
41.
Ornstein
,
D. S.
, and
Weiss
,
B.
(
1993
). “
Entropy and data compression schemes
,”
IEEE Trans. Inf. Theory
39
,
78
83
.
42.
Patil
,
G. P.
, and
Taillie
,
C.
(
1982
). “
Diversity as a concept and its measurement
,”
J. Am. Stat. Assoc.
77
,
548
567
(with discussions).
43.
Payne
,
R.
(
1995
).
Among Whales
(
Scribner’s Sons
,
NY
).
44.
Payne
,
R. S.
, and
McVay
,
S.
(
1971
). “
Songs of humpback whales
,”
Science
173
,
587
597
.
45.
Payne
,
K.
,
Tyack
,
P.
, and
Payne
,
R.
(
1983
). “
Progressive changes in the songs of humpback whales (Megaptera novaeangliae): A detailed analysis of two seasons in Hawaii
,” in
Communication and Behavior of Whales
, edited by
R.
Payne
,
AAAS Selected Symposium 76
(
Westview
,
Boulder, CO
), pp.
9
58
.
46.
Peet
,
R. K.
(
1974
). “
The measurement of species diversity
,”
Annu. Rev. Ecol. Syst.
5
,
285
307
.
47.
Pitton
,
J. W.
,
Wang
,
K.
, and
Juang
,
B.-H.
(
1996
) “
Time-frequency analysis and auditory modeling for automatic recognition of speech
,”
Proc. IEEE
84
,
1199
1215
.
48.
Savage-Rumbaugh
,
S.
,
McDonald
,
K.
,
Sevcik
,
R. A.
,
Hopkins
,
W. D.
, and
Rubert
,
E.
(
1986
), “
Spontaneous symbol acquisition and communicative use by pygmy chimpanzees (Pan paniscus)
,”
J. Exp. Psychol.
115
,
211
235
.
49.
Shannon
,
C. E.
(
1948
). “
A mathematical theory of communication
,”
Bell Syst. Tech. J.
27
,
379
423
.
50.
Shannon
,
C. E.
(
1951
). “
Prediction and entropy of printed English
,”
Bell Syst. Tech. J.
30
,
50
64
.
51.
Shields
,
P. C.
(
1996
).
Ergodic Theory of Discrete Sample Paths
(
American Mathematical Society
,
Providence, RI
).
52.
Slater
,
P. J. B.
(
1973
). “
Describing sequences of behavior
,” in
Perspectives in Ethology
, edited by
P. P. G.
Bateson
, and
P. H.
Klopfer
, (
Plenum Press
,
New York
), Vol.
1
, pp.
131
153
.
53.
Tyack
,
P. L.
(
1981
). “
Interactions between singing Hawaiian humpback whales and conspecifics nearby
,”
Behav. Ecol. Sociobiol.
8
,
105
116
.
54.
Tyack
,
P. L.
(
1998
). “
Acoustic communication under the sea
,” in
Animal Acoustic Communication: Sound Analysis and Research Methods
, edited by
S. L.
Hopp
,
M. J.
Owren
, and
C. S.
Evans
(
Springer
,
Berlin
), pp.
163
220
.
55.
Tyack
,
P. L.
, and
Sayigh
,
L. S.
(
1997
). “
Vocal learning in cetaceans
,” in
Social Influences on Vocal Development
, edited by
C.
Snowdon
, and
M.
Hausberger
(
Cambridge University Press
,
Cambridge
), pp.
208
233
.
56.
Verdú
,
S.
, and
Han
,
T. S.
(
1997
). “
The role of the asymptotic equipartition property in noiseless source coding
,”
IEEE Trans. Inf. Theory
43
,
847
857
.
57.
Walker
,
A.
,
Fisher
,
R. B.
, and
Mitsakakis
,
N.
(
1996
). “
Singing maps: Classification of whalesong units using a self-organizing feature mapping algorithm
,” Research Paper No. 833, Department of AI, University of Edinburgh, UK.
58.
Winn
,
H. E.
, and
Winn
,
L. K.
(
1978
). “
The song of the humpback whale Megaptera novaeangliae in the West Indies
,”
Mar. Biol. (Berlin)
47
,
97
114
.
59.
Wyner
,
A. J.
(
1993
). “
String matching theorems and applications to data compression and statistics
,” Ph.D. dissertation, Department of Statistics,
Stanford University
, Palo Alto, CA.
60.
Wyner
,
A. D.
, and
Ziv
,
J.
(
1989
). “
Some asymptotic properties of the entropy of a stationary ergodic data source with applications to data compression
,”
IEEE Trans. Inf. Theory
35
,
1250
1258
.
61.
Wyner
,
A. D.
, and
Wyner
,
A. J.
(
1994
). “
The sliding window Lempel–Ziv algorithm is asymptotically optimal
,”
Proc. IEEE
82
,
872
877
.
62.
Wyner
,
A. D.
, and
Wyner
,
A. J.
(
1995
). “
Improved redundancy of a version of the Lempel–Ziv algorithm
,”
IEEE Trans. Inf. Theory
41
,
723
731
.
63.
Wyner
,
A. D.
,
Ziv
,
J.
, and
Wyner
,
A. J.
(
1998
). “
On the role of pattern matching in information theory
,”
IEEE Trans. Inf. Theory
44
,
2045
2056
.
64.
Ziv
,
J.
, and
Lempel
,
A.
(
1977
). “
A universal algorithm for sequential data compression
,”
IEEE Trans. Inf. Theory
23
,
337
343
.
65.
Ziv
,
J.
, and
Lempel
,
A.
(
1978a
). “
Coding theorems for individual sequences
,”
IEEE Trans. Inf. Theory
24
,
405
412
.
66.
Ziv
,
J.
, and
Lempel
,
A.
(
1978b
). “
Compression of individual sequences via variable-rate coding
,”
IEEE Trans. Inf. Theory
24
,
530
536
.
You do not currently have access to this content.