State-of-the-art finite-element methods for time-harmonic acoustics governed by the Helmholtz equation are reviewed. Four major current challenges in the field are specifically addressed: the effective treatment of acoustic scattering in unbounded domains, including local and nonlocal absorbing boundary conditions, infinite elements, and absorbing layers; numerical dispersion errors that arise in the approximation of short unresolved waves, polluting resolved scales, and requiring a large computational effort; efficient algebraic equation solving methods for the resulting complex-symmetric (non-Hermitian) matrix systems including sparse iterative and domain decomposition methods; and a posteriori error estimates for the Helmholtz operator required for adaptive methods. Mesh resolution to control phase error and bound dispersion or pollution errors measured in global norms for large wave numbers in finite-element methods are described. Stabilized, multiscale, and other wave-based discretization methods developed to reduce this error are reviewed. A review of finite-element methods for acoustic inverse problems and shape optimization is also given.

1.
Ainsworth
,
M.
(
2004
). “
Discrete dispersion relation for hp-version finite element approximation at high wave number
,”
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
42
(
2
),
553
575
.
2.
Ainsworth
,
M.
, and
Oden
,
J. T.
(
2000
).
A Posteriori Error Estimation in Finite Element Analysis
(
Wiley
,
New York
).
3.
Antoine
,
X.
(
2002
). “
An algorithm coupling the OSRC and FEM for the computation of an approximate scattered acoustic field by a non-convex body
,”
Int. J. Numer. Methods Eng.
54
(
7
),
1021
1041
.
4.
Antoine
,
X.
,
Barucq
,
H.
, and
Bendali
,
A.
(
1999
). “
Bayliss-Turkel-like radiation conditions on surfaces of arbitrary shape
,”
J. Math. Anal. Appl.
229
(
1
),
184
211
.
5.
Astley
,
R. J.
(
2000
). “
Infinite elements for wave problems: A review of current formulations and an assessment of accuracy
,”
Int. J. Numer. Methods Eng.
49
,
951
976
.
6.
Astley
,
R. J.
, and
Coyette
,
J.-P.
(
2001
). “
The performance of spheroidal infinite elements
,”
Int. J. Numer. Methods Eng.
52
(
12
),
1379
1396
.
7.
Astley
,
R. J.
, and
Hamilton
,
J. A.
(
2000
). “
Numerical studies of conjugated infinite elements for acoustical radiation
,”
J. Comput. Acoust.
8
(
1
),
1
24
.
8.
Astley
,
R. J.
,
Macaulay
,
G. J.
,
Coyette
,
J.-P.
, and
Cremers
,
L.
(
1998a
). “
Three-dimensional wave-envelope elements of variable order for acoustic radiation and scattering. I. Formulation in the frequency domain
,”
J. Acoust. Soc. Am.
103
,
49
63
.
9.
Astley
,
R. J.
,
Macaulay
,
G. J.
,
Coyette
,
J.-P.
, and
Cremers
,
L.
(
1998b
). “
Three-dimensional wave-envelope elements of variable order for acoustic radiation and scattering. II. Formulation in the time domain
,”
J. Acoust. Soc. Am.
103
,
64
72
.
10.
Atkinson
,
F. V.
(
1949
). “
On Sommerfeld’s radiation condition
,”
Philos. Mag.
40
,
645
651
.
11.
Babuska
,
I.
, and
Melenk
,
J. M.
(
1997
). “
The partition of unity method
,”
Int. J. Numer. Methods Eng.
40
,
727
758
.
12.
Babuska
,
I.
,
Ihlenburg
,
F.
,
Strouboulis
,
T.
, and
Gangaraj
,
S. K.
(
1997
). “
A posteriori error estimation for finite element solutions of Helmholtz’equation. I. The quality of local indicators and estimators
,”
Int. J. Numer. Methods Eng.
40
(
18
),
3443
3462
.
13.
Babuska
,
I.
,
Ihlenburg
,
F.
,
Strouboulis
,
T.
, and
Gangaraj
,
S. K.
(
1997
). “
A posteriori error estimation for finite element solutions of Helmholtz’ equation. II. Estimation of the pollution error
,”
Int. J. Numer. Methods Eng.
40
(
21
),
3883
3900
.
14.
Bangtsson
,
E.
,
Noreland
,
D.
, and
Berggren
,
M.
(
2003
). “
Shape optimization of an acoustic horn
,”
Comput. Methods Appl. Mech. Eng.
192
(
11–12
),
1533
1571
.
15.
Barbone
,
P. E.
, and
Harari
,
I.
(
2001
). “
Nearly H1-optimal finite element methods
,”
Comput. Methods Appl. Mech. Eng.
190
,
5679
5690
.
16.
Bayliss
,
A.
,
Goldstein
,
C. I.
, and
Turkel
,
E.
(
1983
). “
An iterative method for Helmholtz equation
,”
J. Comput. Phys.
49
,
443
457
.
17.
Bayliss
,
A.
,
Gunzberger
,
M.
, and
Turkel
,
E.
(
1982
). “
Boundary conditions for the numerical solution of elliptic equations in exterior domains
,”
SIAM J. Appl. Math.
42
(
2
),
430
451
.
18.
Bayliss
,
A.
,
Goldstein
,
C.
, and
Turkel
,
E.
(
1985
). “
On accuracy conditions for the numerical computation of waves
,”
J. Comput. Phys.
59
,
396
404
.
19.
Bayliss
,
A.
,
Goldstein
,
C. I.
, and
Turkel
,
E.
(
1985
). “
The numerical solution of the Helmholtz equation for wave propagation problems in underwater acoustics
,”
Comput. Math. Appl.
11
(
7/8
),
655
665
.
20.
Benamou
,
J. D.
, and
Despres
,
B.
(
1997
). “
A domain decomposition method for the Helmholtz equation and related optimal control problems
,”
J. Comput. Phys.
136
,
68
82
.
21.
Berenger
,
J.-P.
(
1994
). “
A perfectly matched layer for the absorption of electromagnetic waves
,”
J. Comput. Phys.
114
(
2
),
195
200
.
22.
Bettess
,
P.
(
1977
). “
Infinite elements
,”
Int. J. Numer. Methods Eng.
11
(
1
),
53
64
.
23.
Bettess
,
P.
(
1992
).
Infinite Elements
(
Penshaw
,
Sunderland, UK
).
24.
Bettess
,
P.
,
Shirron
,
J.
,
Laghrouche
,
O.
,
Peseux
,
B.
,
Sugimoto
,
R.
, and
Trevelyan
,
J.
(
2003
). “
A numerical integration scheme for special finite elements for the Helmholtz equation
,”
Int. J. Numer. Methods Eng.
56
,
531
552
.
25.
Bossut
,
R.
, and
Decarpigny
,
J.-N.
(
1989
). “
Finite element modeling of radiating structures using dipolar damping elements
,”
J. Acoust. Soc. Am.
86
(
4
),
1234
1244
.
26.
Bouillard
,
P.
(
1999
). “
Influence of the pollution on the admissible field error estimation for FE solutions of the Helmholtz equation
,”
Int. J. Numer. Methods Eng.
45
(
7
),
783
800
.
27.
Bouillard
,
P.
, and
Ihlenburg
,
F.
(
1998
). “
Error estimation and adaptivity for the finite element method in acoustics
,” in
Advances in Adaptive Computational Methods in Mechanics
, edited by
P.
Ladeveze
and
J. T.
Oden
(
Elsevier
,
Amsterdam
), pp.
477
492
.
28.
Bouillard
,
P.
, and
Ihlenburg
,
F.
(
1999
). “
Error estimation and adaptivity for the finite element method in acoustics: 2D and 3D applications
,”
Comput. Methods Appl. Mech. Eng.
176
,
147
163
.
29.
Brandt
,
A.
, and
Livshitz
,
I.
(
1997
). “
Ray-wave multigrid method for Helmholtz equation
,”
Electron. Trans. Numer. Anal.
6
,
162
181
.
30.
Burnett
,
D. S.
(
1994
). “
A 3-D acoustic infinite element based on a generalized multipole expansion
,”
J. Acoust. Soc. Am.
96
,
2798
2816
.
31.
Burnett
,
D. S.
, and
Holford
,
R. L.
(
1998a
). “
Prolate and oblate spheroidal acoustic infinite elements
,”
Comput. Methods Appl. Mech. Eng.
158
,
117
142
.
32.
Burnett
,
D. S.
, and
Holford
,
R. L.
(
1998b
). “
An ellipsoidal acoustic infinite element
,”
Comput. Methods Appl. Mech. Eng.
164
,
49
76
.
33.
Burnett
,
D. S.
, and
Soroka
,
W. W.
(
1972
). “
An efficient numerical technique for evaluating large quantities of highly oscillatory integrals
,”
Jpn. J. Appl. Phys.
10
,
325
332
.
34.
Burton
,
A.
, and
Miller
,
G.
(
1971
). “
The application of integral equation methods to the numerical solution of some exterior boundary-value problems
,”
Proc. R. Soc. London, Ser. A
323
,
201
210
.
35.
Cai
,
X. C.
,
Cararin
,
M. A.
,
Elliott
,
F. W.
, and
Widlund
,
O. B.
(
1998
). “
Overlapping Schwarz algorithms for solving Helmholtz’s equation
,” in
Domain Decomposition Methods 10
, edited by
J.
Mandel
,
C.
Farhat
, and
X. C.
Cai
(
Contemp. Math., AMS
,
Providence, RI
), Vol.
218
, pp.
391
399
.
36.
Cessenat
,
O.
, and
Despres
,
B.
(
1998
). “
Application of an ultra weak variational formulation of elliptic PDEs to the two-dimensional Helmholtz problem
,”
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
35
(
1
),
255
299
.
37.
Cessenat
,
O.
, and
Despres
,
B.
(
2003
). “
Using plane waves as base functions for solving time harmonic equations with the ultra weak variational formulation
,”
J. Comput. Acoust.
11
(
2
),
227
238
.
38.
Challa
,
S.
(
1998
). “
High-order accurate spectral elements for wave propagation problems
,” Master’s thesis,
Clemson University
, Mechanical Engineering Dept., August 1998.
39.
Chen
,
J.-T.
, and
Chen
,
K.-H.
(
2004
). “
Applications of the dual integral formulation in conjunction with fast multipole method in large-scale problems for 2D exterior acoustics
,”
Eng. Anal. Boundary Elem.
28
,
685
709
.
40.
Chew
,
W. C.
,
Jin
,
J. M.
,
Lu
,
C. C.
,
Michielssen
,
E.
, and
Song
,
J. M. M.
(
1997
). “
Fast solution methods in electromagnetics
,”
IEEE Trans. Antennas Propag.
45
(
3
),
533
543
.
41.
Chew
,
W. C.
,
Song
,
J. M.
,
Cui
,
T. J.
,
Velarnparambil
,
S.
,
Hastriter
,
M. L.
, and
Hu
,
B.
(
2004
). “
Review of large scale computing in electromagnetics with fast integral equation solvers
,”
Comput. Model. Eng. Sci.
5
(
4
),
361
372
.
42.
Collino
,
F.
, and
Monk
,
P. B.
(
1998
). “
Optimizing the perfectly matched layer
,”
Comput. Methods Appl. Mech. Eng.
164
(
1–2
),
157
171
.
43.
Collino
,
F.
,
Ghanemi
,
S.
, and
Joly
,
P.
(
2000
). “
Domain decomposition method for harmonic wave propagation: A general presentation
,”
Comput. Methods Appl. Mech. Eng.
184
,
171
211
.
44.
Colton
,
D.
, and
Kreiss
,
R.
(
1983
).
Integral Equation Methods in Scattering Theory
(
Wiley-Interscience
,
New York
).
45.
Craggs
,
A.
(
1972
). “
The use of simple three-dimensional acoustic finite elements for determining the natural modes and frequencies of complex shaped enclosures
,”
J. Sound Vib.
23
(
3
),
331
339
.
46.
Darrigrand
,
E.
(
2002
). “
Coupling of fast multipole method and microlocal discretization for the 3-D Helmholtz equation
,”
J. Comput. Phys.
181
(
1
),
126
154
.
47.
Darve
,
E.
(
2000
). “
The fast multipole method (i): Error analysis and asymptotic complexity
,”
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
38
(
1
),
98
128
.
48.
Deraemaeker
,
A.
,
Babuska
,
I.
, and
Bouillard
,
P.
(
1999
). “
Dispersion and pollution of the FEM solution for the Helmholtz equation in one, two, and three dimensions
,”
Int. J. Numer. Methods Eng.
46
,
471
499
.
49.
Despres
,
B.
(
1993
). “
Domain decomposition method and the Helmholtz problem (Part II)
,” in
2nd International Conference on Mathematical and Numerical Aspects of Wave Propagation
, Newark, DE (SIAM).
50.
Dey
,
S.
(
2003
). “
Evaluation of p-FEM approximations for mid-frequency elasto-acoustics
,”
J. Comput. Acoust.
11
(
2
),
195
225
.
51.
Djellouli
,
R.
,
Farhat
,
C.
, and
Tezaur
,
R.
(
2001
). “
A fast method for solving acoustic scattering problems in frequency bands
,”
J. Comput. Phys.
168
,
412
432
.
52.
Dreyer
,
D.
, and
von Estorff
,
O.
(
2003
). “
Improving conditioning of infinite elements for exterior acoustics
,”
Int. J. Numer. Methods Eng.
58
(
6
),
933
953
.
53.
Elman
,
H. C.
, and
O’Leary
,
D. P.
(
1998
). “
Efficient iterative solution of the three-dimensional Helmholtz equation
,”
J. Comput. Phys.
142
,
163
181
.
54.
Elman
,
H. C.
,
Ernst
,
O. G.
, and
O’Leary
,
D. P.
(
2001
). “
A multigrid method enhanced by Krylov subspace iteration for discrete Helmholtz equations
,”
SIAM J. Sci. Comput. (USA)
23
,
1290
1314
.
55.
Enquist
,
B.
, and
Majda
,
A.
(
1977
). “
Absorbing boundary conditions for the numerical simulation of waves
,”
Math. Comput.
31
(
139
),
629
651
.
56.
Epton
,
M. A.
, and
Dembart
,
B.
(
1995
). “
Multipole translation theory for three-dimensional Laplace and Helmholtz equations
,”
SIAM J. Sci. Comput. (USA)
16
(
4
),
865
897
.
57.
Erlangga
,
Y. A.
,
Vuik
,
C.
, and
Oosterlee
,
C. W.
(
2004
). “
On a class of preconditioners for solving the Helmholtz equation
,”
Appl. Numer. Math.
50
(
3–4
),
409
425
.
58.
Ernst
,
O. G.
(
1996
). “
A finite-element capacitance matrix method for exterior Helmholtz problems
,”
Numer. Math.
75
,
175
204
.
59.
Farhat
,
C.
,
Harari
,
I.
, and
Hetmaniuk
,
U.
(
2003
). “
The discontinuous enrichment method for multiscale analysis
,”
Comput. Methods Appl. Mech. Eng.
192
,
3195
3209
.
60.
Farhat
,
C.
,
Tezaur
,
R.
, and
Djellouli
,
R.
(
2002
). “
On the solution of three-dimensional inverse obstacle acoustic scattering problems by a regularized Newton method
,”
Inverse Probl.
18
(
5
),
1229
1246
.
61.
Farhat
,
C.
,
Macedo
,
A.
,
Lesoinne
,
M.
,
Roux
,
F.
,
Magoules
,
F.
, and
La Bourdonnaie
,
A.
(
2000
). “
Two-level domain decomposition methods with Lagrange multipliers for the fast iterative solution of acoustic scattering problems
,”
Comput. Methods Appl. Mech. Eng.
184
,
213
239
.
62.
Feijoo
,
G. R.
,
Oberai
,
A. A.
, and
Pinsky
,
P. M.
(
2004
). “
An application of shape optimization in the solution of inverse acoustic scattering problems
,”
Inverse Probl.
20
(
1
),
199
228
.
63.
Feldmann
,
P.
, and
Freund
,
R. W.
(
1995
). “
Efficient linear circuit analysis by Padé approximation via the Lanczos process
,”
IEEE Trans. Comput.-Aided Des.
14
,
639
649
.
64.
Fischer
,
M.
, and
Gaul
,
L.
(
2005
). “
Fast BEM-FEM mortar coupling for acoustic-structure interaction
,”
Int. J. Numer. Methods Eng.
28
(
62
),
1677
1690
.
65.
Fischer
,
M.
,
Gauger
,
U.
, and
Gaul
,
L.
(
2004
). “
A multipole Galerkin boundary element method for acoustics
,”
Eng. Anal. Boundary Elem.
28
(
2
),
155
162
.
66.
Franca
,
L. P.
,
Farhat
,
C.
,
Macedo
,
A. P.
, and
Lesoinne
,
M.
(
1997
). “
Residual-free bubbles for the Helmholtz equation
,”
Int. J. Numer. Methods Eng.
40
(
21
),
4003
4009
.
67.
Freund
,
R. W.
(
1991
). “
QMR: A quasi-minimal residual method of non-Hermitian linear systems
,”
Numer. Math.
1
(
60
),
315
339
.
68.
Freund
,
R. W.
(
1993
). “
A transpose-free quasi-minimal residual algorithm for non-Hermitian linear systems
,”
SIAM J. Sci. Comput. (USA)
14
(
2
),
470
482
.
69.
Freund
,
R. W.
(
1999
). “
Reduced-order modeling techniques based on Krylov subspaces and their use in circuit simulation
,”
Applied and Computational Control, Signals, and Circuits
1
,
435
498
.
70.
Fritze
,
D.
,
Marburg
,
S.
, and
Hardtke
,
H.-J.
(
2005
). “
FEM-BEM coupling and structural acoustic sensitivity analysis for shell geometries
,”
Comput. Struct.
83
,
143
154
.
71.
Gander
,
M. J.
, and
Nataf
,
F.
(
2001
). “
AILU for Helmholtz problems: A new preconditioner based on the analytic parabolic factorization
,”
J. Comput. Acoust.
9
(
4
),
1499
1509
.
72.
Gander
,
M. J.
,
Magoules
,
F.
, and
Nataf
,
F.
(
2002
). “
Optimized Schwarz methods without overlap for the Helmholtz equation
,”
SIAM J. Sci. Comput. (USA)
24
,
38
60
.
73.
Gerdes
,
K.
(
1998
). “
Conjugated versus the unconjugated infinite element method for the Helmholtz equation in exterior domains
,”
Comput. Methods Appl. Mech. Eng.
152
,
125
145
.
74.
Givoli
,
D.
(
1999
). “
Recent advances in the DtN FE method
,”
Arch. Comput. Methods Eng.
6
(
2
),
71
116
.
75.
Givoli
,
D.
(
2004
). “
High-order local non-reflecting boundary conditions: A review
,”
Wave Motion
39
,
319
326
.
76.
Givoli
,
D.
,
Patlashenko
,
I.
, and
Keller
,
J. B.
(
1997
). “
High order boundary conditions and finite elements for infinite domains
,”
Comput. Methods Appl. Mech. Eng.
143
,
13
39
.
77.
Gladwell
,
G. M. L.
(
1966
). “
A variational formulation of damped acousto-structural vibration problems
,”
J. Sound Vib.
4
,
172
186
.
78.
Goldstein
,
C. I.
(
1986
). “
The weak element method applied to Helmholtz type equations
,”
Appl. Numer. Math.
2
,
409
426
.
79.
Greengard
,
L.
,
Huang
,
J.
,
Rokhlin
,
V.
, and
Stephen
,
W.
(
1998
). “
Accelerating fast multipole methods for the Helmholtz equation at low frequencies
,”
IEEE Comput. Sci. Eng.
5
(
3
),
32
38
.
80.
Grote
,
M. J.
, and
Keller
,
J. B.
(
1995
). “
On nonreflecting boundary conditions
,”
J. Comput. Phys.
122
,
231
243
.
81.
Guddati
,
M. N.
, and
Yue
,
B.
(
2004
). “
Modified integration rules for reducing dispersion error in finite element methods
,”
Comput. Methods Appl. Mech. Eng.
193
(
3–5
),
275
287
.
82.
Gumerov
,
N. A.
, and
Duraiswami
,
R.
(
2004
). “
Computation of scattering from clusters of spheres using the fast multipole method
,”
J. Acoust. Soc. Am.
117
,
1744
1761
.
83.
Habbal
,
A.
(
1998
). “
Nonsmooth shape optimization applied to linear acoustics
,”
SIAM J. Optim.
8
(
4
),
989
1006
.
84.
Hagstrom
,
T.
(
1999
).
Radiation Boundary Conditions for the Numerical Simulation of Waves
(
Cambridge University Press
,
Cambridge
), Vol.
8
.
85.
Hagstrom
,
T.
, and
Hariharan
,
S. I.
(
1998
). “
A formulation of asymptotic and exact boundary conditions using local operators
,”
Appl. Numer. Math.
27
,
403
416
.
86.
Harari
,
I.
(
2004
). “
Acoustics
,” in
Finite Element Methods: 1970’s and Beyond
, edited by
L. P.
Franca
,
T. E.
Tezduyar
, and
A.
Masud
(
CIMNE
,
Barcelona
).
87.
Harari
,
I.
, and
Hughes
,
T. J. R.
(
1992
). “
A cost comparison of boundary element and finite element methods for problems of time-harmonic acoustics
,”
Comput. Methods Appl. Mech. Eng.
97
,
77
102
.
88.
Harari
,
I.
, and
Hughes
,
T. J. R.
(
1992
). “
Analysis of continuous formulations underlying the computation of time-harmonic acoustics in exterior domains
,”
Comput. Methods Appl. Mech. Eng.
97
,
103
124
.
89.
Harari
,
I.
, and
Hughes
,
T. J. R.
(
1992
). “
Galerkin/least-squares finite element methods for the reduced wave equation with non-reflecting boundary conditions in unbounded domains
,”
Comput. Methods Appl. Mech. Eng.
98
,
411
454
.
90.
Harari
,
I.
, and
Magoules
,
F.
(
2004
). “
Numerical investigations of stabilized finite element computations for acoustics
,”
Wave Motion
39
(
4
),
339
349
.
91.
Harari
,
I.
, and
Nogueira
,
C. L.
(
2002
). “
Reducing dispersion of linear triangular elements for the Helmholtz equation
,”
J. Eng. Mech.
128
(
3
),
351
358
.
92.
Harari
,
I.
,
Slavutin
,
M.
, and
Turkel
,
E.
(
2000
). “
Analytical and numerical studies of a finite element PML for the Helmholtz equation
,”
J. Comput. Acoust.
8
(
1
),
121
137
.
93.
Harari
,
I.
,
Grosh
,
K.
,
Hughes
,
T. J. R.
,
Malhotra
,
M.
,
Pinsky
,
P. M.
,
Stewart
,
J. R.
, and
Thompson
,
L. L.
(
1996
). “
Recent developments in finite element methods for structural acoustics
,”
Arch. Comput. Methods Eng.
3
,
132
311
.
94.
Heikkola
,
E.
,
Kuznetsov
,
Y. A.
, and
Lipnikov
,
K.
(
1999
). “
Fictitious domain methods for the numerical solution of three-dimensional acoustic scattering problems
,”
J. Comput. Acoust.
7
,
161
183
.
95.
Heikkola
,
E.
,
Rossi
,
T.
, and
Toivanen
,
J.
(
2003
). “
A parallel fictitious domain method for the three-dimensional Helmholtz equation
,”
SIAM J. Sci. Comput. (USA)
24
(
5
),
1567
1588
.
96.
Huan
,
R.
, and
Thompson
,
L. L.
(
2000
). “
Accurate radiation boundary conditions for the time-dependent wave equation on unbounded domains
,”
Int. J. Numer. Methods Eng.
47
,
1569
1603
.
97.
Hughes
,
T. J. R.
(
2000
).
The Finite Element Method: Linear Static and Dynamic Finite Element Analysis
(
Dover Publications
,
New York
).
98.
Hughes
,
T. J. R.
,
Feijoo
,
G. R.
,
Mazzei
,
L.
, and
Quincy
,
J.-B.
(
1998
). “
The variational multiscale method—a paradigm for computational mechanics
,”
Comput. Methods Appl. Mech. Eng.
166
,
3
24
.
99.
Hunt
,
J. T.
,
Knittel
,
M. R.
, and
Barach
,
D.
(
1974
). “
Finite-element approach to acoustic radiation from elastic structures
,”
J. Acoust. Soc. Am.
55
(
2
),
269
280
.
100.
Hunt
,
J. T.
,
Knittel
,
M. R.
,
Nichols
,
C. S.
, and
Barach
,
D.
(
1975
). “
Finite-element approach to acoustic scattering from elastic structures
,”
J. Acoust. Soc. Am.
57
(
2
),
287
299
.
101.
Huttunen
,
T.
,
Monk
,
P.
, and
Kaipio
,
J.
(
2002
). “
Computational aspects of the ultra-weak variational formulation
,”
J. Comput. Phys.
182
(
1
),
27
46
.
102.
Ianculescu
,
C.
, and
Thompson
,
L. L.
(
2003
). “
Parallel iterative finite element solution methods for three-dimensional acoustic scattering
,”
2003 ASME International Mechanical Engineering Congress & Exposition
,
Washington
, D.C., 16–21, Nov. 2003, Paper IMECE2003-44266.
103.
Ianculescu
,
C.
, and
Thompson
,
L. L.
(in press). “
Parallel iterative solution for the Helmholtz equation with exact non-reflecting boundary conditions
,”
Comput. Methods Appl. Mech. Eng.
.
104.
Ihlenburg
,
F.
(
1998
).
Finite Element Analysis of Acoustic Scattering
(
Springer
,
Berlin
).
105.
Ihlenburg
,
F.
(
2000
). “
On fundamental aspects of exterior approximations with infinite elements
,”
J. Comput. Acoust.
8
(
1
),
63
80
.
106.
Ihlenburg
,
F.
(
2003
). “
The medium-frequency range in computational acoustics: Practical and numerical aspects
,”
J. Comput. Acoust.
11
(
2
),
175
194
.
107.
Ihlenburg
,
F.
, and
Babuska
,
I.
(
1995
). “
Dispersion analysis and error estimation of Galerkin finite element methods for the Helmholtz equation
,”
Int. J. Numer. Methods Eng.
38
,
3745
3774
.
108.
Ingel
,
R. P.
,
Dyka
,
C. T.
, and
Flippen
,
L. D.
(
2000
). “
Model reduction and frequency windowing for acoustic FEM analysis
,”
J. Sound Vib.
238
(
2
),
327
350
.
109.
Irimie
,
S.
, and
Bouillard
,
P.
(
2001
). “
A residual a posteriori error estimator for the finite element solution of the Helmholtz equation
,”
Comput. Methods Appl. Mech. Eng.
190
(
31
),
4027
4042
.
110.
Jameson
,
A.
(
1988
). “
Aerodynamic design via control theory
,”
J. Scientific Computing
3
,
233
260
.
111.
Kang
,
F.
(
1983
). “
Finite element method and natural boundary reduction
,” in
Proceedings of the International Congress of Mathematicians
, pp.
1439
1453
.
Warsaw
.
112.
Kechroud
,
R.
,
Soulaimani
,
A.
,
Saad
,
Y.
, and
Gowda
,
S.
(
2004
). “
Preconditioning techniques for the solution of the Helmholtz equation by the finite element method
,”
Math. Comput. Simul.
65
,
303
321
.
113.
Keller
,
J. B.
, and
Givoli
,
D.
(
1989
). “
Exact non-reflecting boundary conditions
,”
J. Comput. Phys.
81
,
172
192
.
114.
Kim
,
S.
(
1998
). “
Domain decomposition iterative procedures for solving scalar waves in the frequency domain
,”
Numer. Math.
79
,
231
259
.
115.
Kress
,
R.
(
2003
). “
Newton’s method for inverse obstacle scattering meets the method of least-squares
,”
Inverse Probl.
19
(
6
),
S91
S104
.
116.
Lacroix
,
V.
,
Bouillard
,
Ph.
, and
Villon
,
P.
(
2003
). “
An iterative defect-correction type meshless method for acoustics
,”
Int. J. Numer. Methods Eng.
57
,
2131
2146
.
117.
Laghrouche
,
O.
, and
Bettess
,
P.
(
2000
). “
Short wave modelling using special finite elements
,”
J. Comput. Acoust.
8
(
1
),
189
210
.
118.
Laghrouche
,
O.
,
Bettess
,
P.
, and
Astley
,
R. J.
(
2002
). “
Modeling of short wave diffraction problems using approximating systems of plane waves
,”
Int. J. Numer. Methods Eng.
54
,
1501
1533
.
119.
Larsson
,
E.
(
1999
). “
A domain decomposition method for the Helmholtz equation in a multilayer domain
,”
SIAM J. Sci. Comput. (USA)
20
(
5
),
1713
1731
.
120.
Lee
,
B.
,
Manteuffel
,
T. A.
,
McCormick
,
S. F.
, and
Ruge
,
J.
(
2000
). “
First-order system least-squares for the Helmholtz equation
,”
SIAM J. Sci. Comput. (USA)
21
,
1927
1949
.
121.
Leis
,
R.
(
1986
).
Initial-boundary Value Problems in Mathematical Physics
(
Teubner
,
Stuttgart
).
122.
Made
,
M. M. M.
(
2001
). “
Incomplete factorization-based preconditionings for solving the Helmholtz equation
,”
Int. J. Numer. Methods Eng.
50
,
1077
1101
.
123.
Magoules
,
F.
,
Roux
,
F.-X.
, and
Salmon
,
S.
(
2004
). “
Optimal discrete transmission conditions for a nonoverlapping domain decomposition method for the Helmholtz equation
,”
SIAM J. Sci. Comput. (USA)
25
(
5
),
1497
1515
.
124.
Malhotra
,
M.
, and
Pinsky
,
P. M.
(
1996
). “
A matrix-free interpretation of the nonlocal Dirichlet-to-Neumann radiation boundary condition
,”
Int. J. Numer. Methods Eng.
39
,
3705
3713
.
125.
Malhotra
,
M.
,
Freund
,
R. W.
, and
Pinsky
,
P. M.
(
1997
). “
Iterative solution of multiple radiation and scattering problems in structural acoustics using a block quasi-minimal residual algorithm
,”
Comput. Methods Appl. Mech. Eng.
146
,
173
196
.
126.
Marburg
,
S.
(
2002
). “
Developments in structural-acoustic optimization for passive noise control
,”
Arch. Comput. Methods Eng.
9
(
4
),
291
370
.
127.
Marchuk
,
G. I.
,
Kuznetsov
,
Y. A.
, and
Matsokin
,
A. M.
(
1986
). “
Fictitious domain and domain decomposition methods
,”
Sov. J. Numer. Anal. Math. Modelling
1
,
3
35
.
128.
Mazzia
,
A.
, and
Pini
,
G.
(
2003
). “
Numerical performance of preconditioning techniques for the solution of complex sparse linear systems
,”
Commun. Numer. Methods Eng.
19
,
37
49
.
129.
Melenk
,
J. M.
, and
Babuska
,
I.
(
1996
). “
The partition of unity method: basic theory and applications
,”
Comput. Methods Appl. Mech. Eng.
139
,
289
314
.
130.
Monk
,
P.
, and
Wang
,
D.-Q.
(
1999
). “
A least-squares method for the Helmholtz equation
,”
Comput. Methods Appl. Mech. Eng.
175
,
121
136
.
131.
Murphy
,
J. E.
, and
Ching-Bing
,
S. A.
(
1989
). “
A finite-element model for ocean acoustic propagation and scattering
,”
J. Acoust. Soc. Am.
86
(
4
),
1478
1483
.
132.
Nefske
,
D. J.
,
Wolf
,
J. A.
, and
Howell
,
L. J.
(
1982
). “
Structural-acoustic finite element analysis of the automobile passenger compartment: A review of current practice
,”
J. Sound Vib.
80
(
2
),
247
266
.
133.
Oberai
,
A. A.
, and
Pinsky
,
P. M.
(
2000
). “
A residual-based finite element method for the Helmholtz equation
,”
Int. J. Numer. Methods Eng.
49
,
399
419
.
134.
Oberai
,
A. A.
,
Malhotra
,
M.
, and
Pinsky
,
P. M.
(
1998
). “
On the implementation of the Dirichlet-to-Neumann radiation condition for iterative solution of the Helmholtz equation
,”
Appl. Numer. Math.
27
,
443
464
.
135.
Ortiz
,
P.
, and
Sanchez
,
E.
(
2001
). “
An improved partition of unity finite element model for diffraction problems
,”
Int. J. Numer. Methods Eng.
50
,
2727
2740
.
136.
Peraire
,
J.
, and
Patera
,
A. T.
(
1999
). “
Asymptotic a posteriori finite element bounds for the outputs of noncoercive problems: The Helmholtz and Burgers equations
,”
Comput. Methods Appl. Mech. Eng.
171
(
1
),
77
86
.
137.
Petyt
,
M.
(
1990
).
Introduction to Finite Element Vibration Analysis
(
Cambridge University Press
,
Cambridge
).
138.
Petyt
,
M.
,
Lea
,
J.
, and
Koopmann
,
G. H.
(
1976
). “
A finite element method for determining the acoustic modes of irregular shaped cavities
,”
J. Sound Vib.
45
(
4
),
495
502
.
139.
Pierce
,
A. D.
,
Cleveland
,
R. O.
, and
Zampolli
,
M.
(
2002
). “
Radiation impedance matrices for rectangular interfaces within rigid baffles: Calculation methodology and applications
,”
J. Acoust. Soc. Am.
111
(
2
),
672
684
.
140.
Qu
,
Y.
, and
Fish
,
J.
(
2002
). “
Multifrontal incomplete factorization for indefinite and complex symmetric systems
,”
Int. J. Numer. Methods Eng.
53
(
6
),
1433
1459
.
141.
Rockhlin
,
V.
(
1993
). “
Diagonal forms of the translation operators for the Helmholtz equation in three dimensions
,”
Appl. Comput. Harmon. Anal.
1
,
82
98
.
142.
Saad
,
Y.
, and
Schultz
,
M. H.
(
1986
). “
GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems
,”
SIAM J. Sci. Comput. (USA)
7
,
856
869
.
143.
Sakuma
,
T.
, and
Yasuda
,
Y.
(
2002
). “
Fast multipole boundary element method for large scale steady state sound field analysis. I. Setup and validation
,”
Acust. Acta Acust.
88
,
513
525
.
144.
Sarrate
,
J.
,
Peraire
,
J.
, and
Patera
,
A. T.
(
1999
). “
A posteriori finite element error bounds for non-linear outputs of the Helmholtz equation
,”
Int. J. Numer. Methods Fluids
31
(
1
),
17
36
.
145.
Schneider
,
S.
(
2003
). “
Application of fast methods for acoustic scattering and radiation problems
,”
J. Comput. Acoust.
11
(
3
),
387
401
.
146.
Shirron
,
J. J.
, and
Babuska
,
I.
(
1998
). “
A comparison of approximate boundary conditions and infinite element methods for exterior Helmholtz problems
,”
Comput. Methods Appl. Mech. Eng.
164
(
1–2
),
121
139
.
147.
Shirron
,
J. J.
, and
Dey
,
S.
(
2002
). “
Acoustic infinite elements for non-separable geometries
,”
Comput. Methods Appl. Mech. Eng.
191
,
4123
4139
.
148.
Simoncini
,
V.
, and
Perotti
,
F.
(
2002
). “
On the numerical solutions of (λ2a+λb+c)x=b and application to structural dynamics
,”
SIAM J. Sci. Comput. (USA)
23
(
6
),
1875
1897
.
149.
Sommerfeld
,
A.
(
1912
). “
Die Greensche Funktion der Schwingungsgleichung
,”
Jahresber. Deutsch. Math.
21
,
309
353
.
150.
Stewart
,
J. R.
, and
Hughes
,
T. J. R.
(
1996
). “
Explicit residual-based a posteriori error estimation for finite element discretizations of the Helmholtz equation. Computation of the constant and new measures of error estimator quality
,”
Comput. Methods Appl. Mech. Eng.
131
(
3–4
),
335
363
.
151.
Stojek
,
M.
(
1998
). “
Least-squares Trefftz-type elements for the Helmholtz equation
,”
Int. J. Numer. Methods Eng.
41
,
831
849
.
152.
Strouboulis
,
T.
,
Babuska
,
I.
, and
Copps
,
K.
(
2000
). “
The design and analysis of the generalized finite element method
,”
Comput. Methods Appl. Mech. Eng.
181
(
1–3
),
43
69
.
153.
Suleau
,
S.
, and
Bouillard
,
P.
(
2000
). “
Dispersion and pollution of meshless solutions for the Helmholtz equation
,”
Comput. Methods Appl. Mech. Eng.
190
,
639
657
.
154.
Susan-Resiga
,
R. F.
, and
Atassi
,
H. M.
(
1998
). “
A domain decomposition method for the exterior Helmholtz problem
,”
J. Comput. Phys.
147
,
388
401
.
155.
Tezaur
,
R.
,
Macedo
,
A.
, and
Farhat
,
C.
(
2001
). “
Iterative solution of large-scale acoustic scattering problems with multiple right hand-sides by a domain decomposition method with lagrange multipliers
,”
Int. J. Numer. Methods Eng.
51
(
10
),
1175
1193
.
156.
Tezaur
,
R.
,
Macedo
,
A.
,
Farhat
,
C.
, and
Djellouli
,
R.
(
2002
). “
Three-dimensional finite element calculations in acoustic scattering using arbitrarily shaped convex artificial boundaries
,”
Int. J. Numer. Methods Eng.
53
(
6
),
1461
1476
.
157.
Thompson
,
L. L.
(
2003
). “
On optimal stabilized MITC4 plate bending elements for accurate frequency response analysis
,”
Comput. Struct.
81
,
995
1008
.
158.
Thompson
,
L. L.
, and
Kunthong
,
P.
(
2005
). “
A residual based variational method for reducing dispersion error in finite element methods
,”
2005 ASME International Mechanical Engineering Congress and Exposition
. 5–11, November 2005,
Orlando
, Florida. The American Society of Mechanical Engineers, Paper IMECE2005-80551.
159.
Thompson
,
L. L.
, and
Pinsky
,
P. M.
(
1994
). “
Complex wavenumber Fourier analysis of the p-version finite element method
,”
Comput. Mech.
13
(
4
),
255
275
.
160.
Thompson
,
L. L.
, and
Pinsky
,
P. M.
(
1995
). “
A Galerkin least squares finite element method for the two-dimensional Helmholtz equation
,”
Int. J. Numer. Methods Eng.
38
,
371
397
.
161.
Thompson
,
L. L.
, and
Pinsky
,
P. M.
(
1996
). “
A space-time finite element method for structural acoustics in infinite domains. II. Exact time-dependent non-reflecting boundary conditions
,”
Comput. Methods Appl. Mech. Eng.
132
,
229
258
.
162.
Thompson
,
L. L.
, and
Pinsky
,
P. M.
(
2004
). “
Acoustics
,” in
Encyclopedia of Computational Mechanics
, edited by
E.
Stein
,
R.
De Borst
, and
J. R.
Hughes
(
Wiley InterScience
,
New York
), Vol.
2
, Chap. 22.
163.
Thompson
,
L. L.
, and
Sankar
,
S.
(
2001
). “
Dispersion analysis of stabilized finite element methods for acoustic fluid interaction with Reissner-Mindlin plates
,”
Int. J. Numer. Methods Eng.
50
(
11
),
2521
2545
.
164.
Thompson
,
L. L.
, and
Thangavelu
,
S. R.
(
2002
). “
A stabilized MITC element for accurate wave response in Reissner-Mindlin plates
,”
Comput. Struct.
80
(
9–10
),
769
789
.
165.
Thompson
,
L. L.
,
Huan
,
R.
, and
Ianculescu
,
C.
(
1999
). “
Finite element formulation of exact Dirichlet-to-Neumann radiation conditions on elliptic and spheroidal boundaries
,” in
1999 ASME International Mechanical Engineering Congress & Exposition
,
Nashville
, TN, 14–19, Nov. 1999, ASME Noise Control and Acoustics Division—1999, NCA-Vol.
26
, pp.
497
510
.
166.
Thompson
,
L. L.
,
Huan
,
R.
, and
He
,
D.
(
2001
). “
Accurate radiation boundary conditions for the two-dimensional wave equation on unbounded domains
,”
Comput. Methods Appl. Mech. Eng.
191
,
311
351
.
167.
Thompson
,
L. L.
,
Zhang
,
L.
, and
Ingel
,
R. P.
(
2001
). “
Domain decomposition methods with frequency band interpolation for computational acoustics
,” in
2001 ASME International Mechanical Engineering Congress and Exposition
, 11–16, November 2001,
New York
, New York. The American Society of Mechanical Engineers, IMECE2001, Paper NCA-23532.
168.
Tsynkov
,
S. V.
, and
Turkel
,
E.
(
2001
). “
A Cartesian perfectly matched layer for the Helmholtz equation
,” in
Absorbing Boundaries and Layers, Domain Decomposition Methods
, edited by
L.
Tourrette
and
L.
Halpern
(
Nova Science
,
New York
), pp.
279
309
.
169.
Turkel
,
E.
, and
Yefet
,
A.
(
1998
). “
Absorbing PML boundary layers for wave-like equations
,”
Appl. Numer. Math.
27
(
4
),
533
557
.
170.
Van der Vorst
,
H. A.
(
1992
). “
BI-CGSTAB: A fast and smoothly converging variant of BI-CG for the solution of nonsymmetric linear systems
,”
SIAM J. Sci. Comput. (USA)
13
(
2
),
631
644
.
171.
Van Hal
,
B.
,
Desmet
,
W.
,
Vandepitte
,
D.
, and
Sas
,
P.
(
2003
). “
A coupled finite element-wave based approach for the steady-state dynamic analysis of acoustic systems
,”
J. Comput. Acoust.
11
(
2
),
285
303
.
172.
van Joolen
,
V.
,
Givoli
,
D.
, and
Neta
,
B.
(
2003
). “
High-order non-reflecting boundary conditions for dispersive waves in cartesian, cylindrical and spherical coordinate systems
,”
Int. J. Comput. Fluid Dyn.
17
(
4
),
263
274
.
173.
Vanek
,
P.
,
Mandel
,
J.
, and
Brezina
,
M.
(
1998
). “
Two-level algebraic multigrid for the Helmholtz problem
,”
Contemp. Math.
218
,
349
356
.
174.
Wagner
,
M. M.
,
Pinsky
,
P. M.
, and
Malhotra
,
M.
(
2003a
). “
Application of Padé via Lanczos approximations for efficient multifrequency solution of Helmholtz problems
,”
J. Acoust. Soc. Am.
113
(
1
),
313
319
.
175.
Wagner
,
M. M.
,
Pinsky
,
P. M.
,
Oberai
,
A. A.
, and
Malhotra
,
M.
(
2003b
). “
A Krylov subspace projection method for simultaneous solution of Helmholtz problems at multiple frequencies
,”
Comput. Methods Appl. Mech. Eng.
192
,
4609
4640
.
176.
Walsh
,
T.
,
Demkowicz
,
L.
, and
Charles
,
R.
(
2004
). “
Boundary element modeling of the external human auditory system
,”
J. Acoust. Soc. Am.
115
(
3
),
1033
1043
.
177.
Wilcox
,
C. H.
(
1956
). “
An expansion theorem for electromagnetic fields
,”
Commun. Pure Appl. Math.
9
,
115
134
.
178.
Wu
,
J.-Y.
,
Kingsland
,
D. M.
,
Lee
,
J.-F.
, and
Lee
,
R.
(
1997
). “
A comparison of anisotropic PML to Berenger’s PML and its application to the finite-element method for EM scattering
,”
IEEE Trans. Antennas Propag.
45
(
1
),
40
50
.
179.
Young
,
J. C.-I.
, and
Crocker
,
M. J.
(
1975
). “
Prediction of transmission loss in mufflers by the finite element method
,”
J. Acoust. Soc. Am.
57
(
1
),
144
148
.
180.
Zienkiewicz
,
O. C.
(
2000
). “
Achievements and some unsolved problems of the finite element method
,”
Int. J. Numer. Methods Eng.
47
(
1–3
),
9
28
.
181.
Zienkiewicz
,
O. C.
, and
Newton
,
R. E.
(
1969
). “
Coupled vibrations of a structure submerged in a compressible fluid
,” in
Proc. Int. Symp. Finite Element Techniques
,
Stuttgart
, Germany, 1969. Int. Assoc. Ship Structures.
You do not currently have access to this content.