In a sound field disturbance of pressure, particle velocity, density, temperature, and energy occur. In this paper acoustic disturbances in air are considered. In the majority of papers on acoustics only changes in the sound pressure are reported while in this paper results on the particle velocity are reported. Since particle velocity is a vector, while the pressure is a scalar, more information can be obtained when using a particle velocity sensor instead of a pressure sensor (microphone). Four particle velocity sensors are combined to one (small) device. In a reverberant room the four autospectra and the six cross spectra are determined. Interpretation of the measured results gives information of the free field (sound field without a contribution of reflections) as well as of the reverberant field.

1.
M. J.
Berliner
and
J. F.
Lindberg
, ed., “
Acoustic particle velocity sensors: Design, performance, and applications
,”
AIP Conference Proceedings 368
(
Woodbury
, New York,
1995
), ISBN 1-56396-549-6;
K.
Kim
,
T.
Gabrielson
, and
G. C.
Lauchle
, “
Development of an accelerometer-based underwater acoustic intensity sensor
,”
J. Acoust. Soc. Am.
116
,
3384
3392
(
2004
).
[PubMed]
2.
A.
Nordby
and
O. -H.
Bjor
,
Proceedings of Internoise
(
1984
), p.
1107
1109
;
O. -H.
Bjor
and
H. J.
Krystad
,
Proc. of the Autumn Conference 1982
(
Anon. Institute of Acoustics
, Edinburgh,
1982
), pp.
B7
1
B7
5
.
3.
H -E
de Bree
, “
An overview of Microflown Technologies
,”
Acta. Acust. Acust.
89
,
163
172
(
2003
);
The Microflown, ISBN 9036515793; www.microflown.com/
4.
R.
Raangs
,
T.
Schlicke
, and
Richard
Barham
, “
Calibration of a micro-machined particle velocity microphone in a standing wave tube using a LDA photon correlation technique
,”
Meas. Sci. Technol.
.
16
,
1099
1108
(
2005
).
5.
V. B.
Svetovoy
and
I. A.
Winter
, “
Model of the μ-flown microphone
,”
Sens. Actuators
86
,
171
181
(
2000
).
6.
J. W.
van Honschoten
,
W. F.
Druyvesteyn
,
H.
Kuipers
,
R.
Raangs
, and
G. J. M.
Krijnen
, “
Selfnoise reduction in acoustic measurements with a particle velocity sensor by means of a cross correlation technique
,”
Acta. Acust.
90
,
349
355
(
2004
).
7.
H -E
de Bree
,
R.
Raangs
, and
W. F.
Druyvesteyn
, “
Sound intensity measurements with the microflown sensor
,”
Proc. Internoise 2004
, Prague, session AN3, Paper 3, Fig. 3 (Microflown Technologies B.V., University of Twente, 2004).
8.
V. A.
Gordienko
,
B. I.
Goncharenko
, and
Ya. A.
Ilyushin
, “
Basic rules of vector-phase structure formulation of the ocean noise field
,”
Acoust. Phys.
39
,
237
242
(
1993
).
9.
V. A.
Shchurov
,
Modern State and Prospects for Use of Underwater Acoustic Intensity Measurements
(
Pacific Oceanological Institute
, Vladivostok,
1998
).
10.
F. J.
Fahy
,
Sound Intensity
, 2nd ed. (
E & FN Spon
, London, 1995), lSBN 0 419 19810 5.
11.
R.
Raangs
,
W. F.
Druyvesteyn
, and
H. E.
de Bree
,
J. Audio Eng. Soc.
51
,
344
357
(
2003
);
J. W.
van Honschoten
,
G. J. M.
Krijnen
,
V. B.
Svetovoy
,
H. E.
de Bree
, and
M. C.
Elwenspoek
,
J. Micromech. Microeng.
14
,
1468
1477
(
2004
).
You do not currently have access to this content.