In forests reverberations have probably detrimental and beneficial effects on avian communication. They constrain signal discrimination by masking fast repetitive sounds and they improve signal detection by elongating sounds. This ambivalence of reflections for animal signals in forests is similar to the influence of reverberations on speech or music in indoor sound transmission. Since comparisons of sound fields of forests and concert halls have demonstrated that reflections can contribute in both environments a considerable part to the energy of a received sound, it is here assumed that reverberations enforce also birdsong in forests. Song elements have to be long enough to be superimposed by reflections and therefore longer signals should be louder than shorter ones. An analysis of the influence of signal length on pure tones and on song elements of two sympatric rainforest thrush species demonstrates that longer sounds are less attenuated. The results indicate that higher sound pressure level is caused by superimposing reflections. It is suggested that this beneficial effect of reverberations explains interspecific birdsong differences in element length. Transmission paths with stronger reverberations in relation to direct sound should favor the use of longer signals for better propagation.

1.
C.
Chappius
, “
Un example de l’influence du millieu sur les emissions vocals des oiseaux: L‘evolution des chants en fôret equatorial
,”
Terre Vie
2
,
183
202
(
1971
).
2.
A.
Jilka
and
B.
Leisler
, “
Die Einpassung dreier Rohrsänger (Acrocephalus schoenobaenus, A. scirpaceus, A. arundinaceus) in ihre Lebensräume in Bezug auf das Frequenzspektrum ihrere Reviergesänge
,”
J. Orn.
115
,
192
212
(
1974
).
3.
E. S.
Morton
, “
Ecological sources of selection in avian sounds
,”
Am. Nat.
109
,
17
43
(
1975
).
4.
K.
Marten
and
P.
Marler
, “
Sound transmission and its significance for animal vocalizations. 1. Temperate Habitats
,”
Behav. Ecol. Sociobiol.
2
,
271
290
(
1977
).
5.
P. M.
Waser
and
M. S.
Waser
, “
Experimental studies of primate vocalizations: Specializations for long-distance propagation
,”
Z. Tierpsychol
43
,
239
263
(
1977
).
6.
R. H.
Wiley
and
D. G.
Richards
, “
Physical constraints on the evolution on acoustic communication in the atmosphere: Implications for the evolution of animal vocalizations
,”
Behav. Ecol. Sociobiol.
3
,
69
94
(
1978
).
7.
D. G.
Richards
and
R. H.
Wiley
, “
Reverberations and amplitude fluctuations in the propagation of sound in a forest: Implications for animal communication
,”
Am. Nat.
126
,
87
100
(
1980
).
8.
H.
Slabbekoorn
,
J.
Ellers
, and
T. B.
Smith
, “
Birdsong and sound transmission: The benefits of reverberations
,”
Condor
104
,
564
573
(
2002
).
9.
L.
Beranek
,
Concert Halls and Opera Houses, How They Sound
(
Acoustical Society of America
, New York,
1996
).
10.
H.
Sakai
,
S.
Sato
, and
Y.
Ando
, “
Orthogonal acoustical factors of sound fields in a forest compared with those in a concert hall
,”
J. Acoust. Soc. Am.
104
,
1491
1497
(
1998
).
11.
H.
Sakai
,
S.
Shibato
, and
Y.
Ando
, “
Orthogonal acoustical factors of a sound field in a bamboo forest
,”
J. Acoust. Soc. Am.
109
,
2827
2830
(
2001
).
12.
J.
Holland
,
T.
Dabelsteen
,
J. S. B.
Pedersen
, and
A. L.
Paris
, “
Potential ranging cues contained within the energetic pauses of transmitted wren song
,”
Bioacoustics
12
,
2
20
(
2002
).
13.
R. S.
Ridgely
and
G.
Tudor
,
The Birds of South America. Volume I. The Oscines Passerines
(
Oxford U. P.
, Oxford,
1989
).
14.
J. W.
Hardy
and
T. A.
Parker
 III
,
Voices of the New World Thrushes
(
ARA Records
, Gainesville,
1992
).
15.
E.
Nemeth
,
H.
Winkler
, and
T.
Dabelsteen
, “
Differential degradation of antbird songs in a neotropical rainforest: Adaptation to perch height?
J. Acoust. Soc. Am.
110
,
3263
3274
(
2001
).
16.
P.
Boesman
,
Birds of Venezuela
(
Bird Songs International
, Enschede,
1999
).
17.
T.
Dabelsteen
,
O. N.
Larsen
, and
S. B.
Pedersen
, “
Habitat-induced degradation of sound signals: Quantifying the effects of communication sounds and bird location on blur ratio excess attenuation and signal-to noise ratio in blackbird song
,”
J. Acoust. Soc. Am.
93
,
2206
2230
(
1993
).
18.
K. H.
Kutruff
, “
Sound in enclosures
,” in
Handbook of Acoustics
, edited by
M. J.
Crocker
(
Wiley
, New York,
1998
), pp.
925
938
.
19.
N.
Mathevon
,
T.
Dabelsteen
, and
S. H.
Blumenrath
, “
Are high perches in the blackcap Sylvia atricapilla song or listening posts? A sound transmission study
,”
J. Acoust. Soc. Am.
117
,
442
449
(
2005
).
20.
M. J.
Ryan
and
E. A.
Brenowitz
, “
The role of phylogeny, and ambient noise in the evolution of bird song
,”
Am. Nat.
126
,
87
100
(
1985
).
21.
P. K.
McGregor
and
T.
Dabelsteen
, “
Communication Networks
,” in
Ecology and Evolution of Acoustic Communication in Birds
, edited by
D. E.
Kroodsma
and
E. H.
Miller
(
Cornell U. P.
, Ithaca, NY,
1996
), pp.
409
426
.
22.
J. E.
Endler
, “
Evolutionary implications of the interaction between animal signals and their environment
,” in
Animal Signals
, edited by
Y.
Espmark
,
T.
Amundsen
, and
G.
Rosenqvist
(
Tapir Academic
, Trondheim,
2000
), pp.
11
46
.
23.
E. S.
Morton
, “
Predictions from the ranging hypothesis for the evolution of long distance signals in birds
,”
Behaviour
99
,
65
86
(
1986
).
24.
N.
Mathevon
,
T.
Aubin
,
T.
Dabelsteen
, and
J. M. E.
Vielliard
, “
Are communication activities shaped by environmental constraints in reverberating and absorbing forest habitat?
An. Acad. Bras. Ciênc.
76
,
259
263
(
2004
).
25.
T.
Aubin
,
N.
Mathevon
,
M. L.
Silvia
,
J. M. E.
Vielliard
, and
F.
Sebe
, “
How a simple and stereotyped signal transmits individual information: The song of the white-browed warbler Basileuterus leucoblepharus
,”
An. Acad. Bras. Ciênc.
76
,
335
344
(
2004
).
26.
N.
Seddon
, “
Ecological adaptation and species recognition drives vocal evolution in Neotropical Suboscine birds
,”
Evolution (Lawrence, Kans.)
59
,
200
215
(
2005
).
27.
A. V.
Badyaev
and
E. S.
Leaf
, “
Habitat associations and song characteristics in Phylloscopus and Hippolais Warblers
,”
Auk
114
,
40
46
(
1997
).
28.
M. G.
Palacios
and
P. L.
Tubaro
, “
Does beak size influence acoustic frequencies in woodcreepers?
Condor
102
,
553
560
(
2000
).
29.
J.
Podos
, “
Correlated evolution of morphology and vocal signal structure in Darwin’s finches
,”
Nature (London)
(London)
409
,
185
188
(
2001
).
30.
R. J.
Dooling
, “
Temporal summation of pure tones in birds
,”
J. Acoust. Soc. Am.
65
,
1058
1060
(
1979
).
31.
R. J.
Dooling
and
M. H.
Searcy
, “
Temporal integration of acoustic signals by the Budgerigar (Melopsittacus undulatus)
,”
J. Acoust. Soc. Am.
77
,
1917
1920
(
1985
).
32.
G. M.
Klump
, “
Bird communication in a noisy world
,” in
Ecology and Evolution of Acoustic Communication in Birds
(
Cornell U. P.
, Ithaca, NY,
1996
), pp.
321
338
.
33.
R. H.
Wiley
, “
Associations of song properties with habitats for territorial oscine birds of eastern North America
,”
Am. Nat.
138
,
973
993
(
1991
).
34.
H.
Slabbekoorn
and
T. B.
Smith
, “
Habitat-dependent song divergence in the little greenbul: An analysis of environmental selection pressures on acoustic signals
,”
Evolution (Lawrence, Kans.)
56
,
1849
1858
(
2002
).
35.
D.
Wallschläger
, “
Correlation of song frequency and body weight in passerine birds
,”
Experientia
36
,
412
(
1990
).
36.
J. B.
Dunning
, “
Body masses of birds of the world
,” in
CRC Handbook on Body Masses
, edited by
J. B.
Dunning
(
CRC
, Boca Raton, FL,
1993
), pp.
3
312
.
You do not currently have access to this content.